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1 Introduction

Measuring and extracting the business cycle plays a key role in applied research, as nu-

merous macroeconomic models impose assumptions on the long- and short-run behavior

of real output. To verify these assumptions, appropriate methods for the decomposition

of time series into trend and cycle are of order and will be considered in this paper.

For log US real GDP, which is the main application of trend-cycle decompositions (see

e.g. Harvey; 1985; Morley et al.; 2003; Morley and Piger; 2012), results in the literature

are puzzling. While empirical evidence supports a strong negative correlation of long- and

short-run shocks, both the correlated unobserved components (UC) model as proposed by

Balke and Wohar (2002) and Morley et al. (2003) and the decomposition of Beveridge and

Nelson (1981) estimate a volatile long-run component together with a noisy cycle, thereby

missing the NBER chronology and contradicting macroeconomic common sense.

Two conflicting solutions to the above puzzle have been proposed by Perron and Wada

(2009) and Kamber et al. (2018). The former authors show that log US real GDP is well

explained by a deterministic long-run component with a trend break after the first quarter

of 1973, implying that the stochastic part of log US real GDP is I(0). While the resulting

decomposition is in line with the NBER chronology, it is at odds with the bulk of the

cointegration literature that assumes stochastic long-run relationships among GDP and

other macroeconomic series as the decomposition does not allow for long-run stochastic

shocks. On the other hand, Kamber et al. (2018) obtain an economically plausible decom-

position by restricting the variance-ratio of long- and short-run shocks to be small, thereby

forcing the I(1) long-run component to be smooth, which leaves additional dynamics to be

captured by the cycle. This directly raises the question why the unrestricted decomposi-

tion of Morley et al. (2003), that nests the model of Kamber et al. (2018), yields different

parameter estimates that are eliminated from the parameter space via the restriction on

the variance-ratio but obviously correspond to a greater log likelihood.

In this paper, we will argue that all aforementioned features are artifacts generated

by the presence of a smooth fractionally integrated long-run component in log US real

GDP with an integration order greater than one. In that case the variance estimate of

the long-run shocks of Morley et al. (2003) is upward-biased, as the additional persistence

of the long-run component that is not captured by the I(1) specification goes directly

into the shocks. The upward-biased variance estimate yields an erratic long-run compo-

nent together with a noisy cycle and a large variance-ratio of long- and short-run shocks.

Conversely, if the variance-ratio is restricted to be small as in Kamber et al. (2018), the

estimated long-run shocks become a fractionally integrated process to grasp the remain-

ing persistence that is not captured by the I(1) specification, thereby violating the white
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noise assumption. While the decomposition fits the NBER chronology, the violation of the

white noise assumption yields inconsistent parameter estimates. Finally, as smooth frac-

tional processes are well approximated by deterministic processes with structural breaks,

this explains the findings of Perron and Wada (2009).

To examine the above hypothesis, we contribute the methodological literature by de-

riving a fractional UC model, where the long-run component is allowed to be fractionally

integrated (I(d)), d ∈ R+, whereas the fractional lag operator Ld = 1 − ∆d of Johansen

(2008), that is defined in (4), enters the lag polynomial of the cyclical component. The

model encompasses state-of-the-art integer-integrated UC models, requires only mild dis-

tributional assumptions on the long- and short-run shocks, and bears the advantage that

no additional assumptions on d are required. It allows to jointly estimate the integration

order together with the other model parameters via a quasi maximum likelihood estimator

that is consistent and asymptotically normal. In addition, single-step estimators for trend

and cycle that are identical to the Kalman filter and smoother are derived. While state-

of-the-art non-parametric estimators for the integration order such as e.g. the exact local

Whittle estimator Shimotsu and Phillips (2005) and the estimator of Geweke and Porter-

Hudak (1983) are downward-biased when strong short-run variation is present (Sun and

Phillips; 2004), our parametric setup allows to draw inference on the integration order by

explicitly modelling the short-run variation via the cyclical component.

With the model at hand, we empirically examine the integration order of log US real

GDP and the validity of the I(1) assumption frequently made in the literature, the stochas-

tic nature of the long-run component in comparison to the suggested deterministic form

in Perron and Wada (2009), and the economic plausibility of the resulting trend-cycle

decomposition. Our results substantiate the fractional hypothesis, as we find log US real

GDP to be integrated of order around 1.3, the 95% confidence interval for the integration

order excludes d = 1, and a glimpse at figure 3 verifies that the decomposition fits the

NBER chronology well. Estimators for the integration order that are robust to structural

breaks confirm the estimated integration order, while no evidence for structural breaks

is found when fractional integration is allowed, implying that the long-run component of

log US real GDP is in fact a fractionally integrated process rather than a spurious frac-

tionally integrated process generated by structural breaks. From an economic perspective,

our findings suggest to withdraw the predominant assumption that long-run shocks have

only a contemporaneous effect on GDP growth and to rather interpret them as having a

gradually decreasing impact over time.

The outline of the paper is as follows. Section 2 details the unobserved components

puzzle and motivates the necessity of a fractional UC model to examine the long-run prop-

erties of log US real GDP. We demonstrates the contradicting results of Morley et al.
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(2003), Perron and Wada (2009), and Kamber et al. (2018) are likely to result from model

misspecification due to the presence of a neglected fractionally integrated long-run com-

ponent. While we find comprehensive evidence for fractional integration in log US real

GDP that is robust to the presence of structural breaks, no evidence for such breaks is

found as soon as fractional integration is allowed for. Section 3 then derives the fractional

UC model and relates it to the literature. Parameter estimation via a quasi maximum

likelihood estimator, that is shown to be consistent and asymptotically normal, is consid-

ered in section 4. For the estimation of latent trend and cycle single-step formulas that

are identical to Kalman filter and smoother are derived. Section 5 applies the model to

decompose log US real GDP, while section 6 concludes. All proofs are contained in the

appendix.

2 The unobserved components puzzle

In this section we give a brief overview of the puzzling results in the UC literature for

log US real GDP and propose a potential solution to the puzzle. UC models assume that

log real GDP yt can be represented as the sum of a long-run component τt and a cyclical

component ct that are unobserved

yt = τt + ct, τt = µ0 + µ1t+ xt, ∆dxt = ηt, a(L)ct = b(L)εt, (1)

t = 1, ..., n, and the latent components are disentangled by imposing assumptions on their

autocovariance functions. The long-run component τt is characterized by an autocovariance

function that decays more slowly than with an exponential rate and captures the long-run

dynamics of a time series, whereas the cycle component ct will be I(0) and accounts for

transitory fluctuations of a series around its trend. While specifications with d = 2 exist

(Clark; 1987; Oh and Zivot; 2006), the bulk of the literature for GDP assumes τt to follow

a random walk with drift by setting d = 1, while ct is a stationary and invertible ARMA

process, and the underlying long- and short-run shocks ηt, εt, that generate τt and ct,

typically are Gaussian white noise and may be contemporaneously correlated.

As the model in (1) is not identified without further restrictions, the UC literature either

restricts long- and short-run shocks to be uncorrelated (cf. e.g. Harvey; 1985), assumes

b(L) = 1 as in the correlated UC model of Morley et al. (2003), or estimates τt, ct based on a

reduced form ARMA representation of ∆yt via the decomposition of Beveridge and Nelson

(1981). As found by Morley et al. (2003), uncorrelatedness of short- and long-run shocks

is likely to be violated for US GDP when τt ∼ I(1), and their resulting decomposition is

virtually identical to the Beveridge-Nelson decomposition.
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However, as also summarized by Perron and Wada (2009, ch. 2), allowing for correlated

shocks yields a decomposition that is at odds with economic common sense: Estimates from

the correlated UC model imply a high variance for the long-run shocks together with a

small variance for the short-run shocks, leading to an erratic long-run component that

strongly fluctuates around a linear trend and leaving only little variation to the cycle,

see Morley et al. (2003, fig. 3) and Perron and Wada (2009, fig. 1). Consequently, the

estimated cycle behaves noisy and does not resemble the NBER chronology. In addition,

the estimated components are not in line with multivariate UC models that find a rather

smooth trend together with a cycle hitting the NBER recession periods, see for instance

Harvey and Trimbur (2003), Basistha and Nelson (2007) and Harvey et al. (2007).

Two important solutions to these problems have recently been suggested. First, Perron

and Wada (2009) argue that the correlated UC model misspecifies the long-run properties

of log US real GDP, and τt should be modelled as a purely deterministic trend that allows

for a change in slope after the first quarter of 1973. And second, Kamber et al. (2018)

suggest to restrict the variance-ratio of long- and short-run shocks Var(ηt)/Var(εt) to be

small, thereby forcing the trend to become smooth. Both decompositions are well in line

with the NBER chronology but have conflicting implications for the stochastic nature of

GDP’s long-run component.

If we assume the specification of Perron and Wada (2009) to be correct, then log US real

GDP is I(0) and fluctuates around a deterministic trend with a single break after 1973:1,

which contradicts the bulk of the literature that finds GDP to be cointegrated with several

macroeconomic aggregates. Instead, the model ascribes a deterministic nature to perma-

nent shocks, while e.g. technological innovations are widely assumed to be of a stochastic

nature and to exhibit a permanent impact. Conversely, if we believe the restricted UC

model of Kamber et al. (2018), it remains an open question why the unrestricted model of

Morley et al. (2003), that nests the restricted model, yields a different estimate and, thus,

a greater log likelihood.

We will argue that the solution to this puzzle is that neither the model of Perron and

Wada (2009) nor the model of Kamber et al. (2018) is correctly specified, as log US real

GDP violates both the I(0) assumption of the former and the I(1) assumption of the latter.

Our argument is based on the observation that a smooth fractionally integrated trend in

log US real GDP with integration order greater than one, i.e. τt ∼ I(d), d ∈ R+, d > 1,

well explains the contradicting results in Morley et al. (2003), Perron and Wada (2009),

and Kamber et al. (2018), and we provide evidence for this hypothesis in the following.

Given that log US real GDP is integrated of order greater than one, both the correlated

UC model of Morley et al. (2003) and the corresponding Beveridge-Nelson decomposition

will attribute the additional persistence that is not captured by the I(1) specification to
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the long-run shocks ηt, so that their variance estimate will be upward-biased. This explains

the erratic trend that is obtained in Morley et al. (2003) and leaves only small variation to

the cyclical component. If the parameter space is then restricted to the region where the

variance of the long-run shocks is small, as in Kamber et al. (2018), the underlying long-

run shock estimates become fractionally integrated, as the additional persistence cannot

be grasped by their variance parameter. This violates the white noise assumption, yields

inconsistent estimates and explains why the model of Morley et al. (2003) that nests the

restricted specification returns a different estimate together with a greater log likelihood.

Our theoretical considerations are substantiated by the estimated long-run shocks of Kam-

ber et al. (2018), for which figure 1 plots the autocorrelation function together with the

smoothed periodogram.
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Figure 1: Estimated autocorrelations and smoothed periodogram for the long-run shock
estimates in Kamber et al. (2018). The plots were generated based on the publicly available
code from Kamber et al. (2018).

As becomes clear from figure 1, the long-run shocks are strongly correlated, and the

white noise assumption thus is violated. The rather linear decay of the autocorrelation

function and the maximum of the periodogram at the zero frequency indicate that the long-

run shocks are fractionally integrated, which is substantiated by the exact local Whittle

estimator (Shimotsu and Phillips; 2005) and the estimator of Geweke and Porter-Hudak

(1983) that estimate an integration order of 0.2041 and 0.3352 for the long-run shocks.

Consequently, the estimated long-run component of Kamber et al. (2018), which is an

unweighted sum of the long-run shocks, is not I(1) as implied by the model, but rather

integrated of order around 1.3. Therefore, the model of Kamber et al. (2018) is misspecified,

which explains why the unrestricted estimator in Morley et al. (2003) returns different
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parameter estimates and serves as evidence for the fractional hypothesis.

While the results in figure 1 clearly indicate a violation of the I(1) assumption for

log US real GDP and support the fractional hypothesis, they are not sufficient to prove

that log US real GDP is indeed a fractionally integrated process. A hyperbolic decay of

the autocovariance function together with a pole in the spectral density at frequency zero

can be generated by both, a fractionally integrated process, and a short memory process

contaminated by level shifts and deterministic trends. While the former is typically called a

long memory process, the latter case is referred to as spurious long memory in the literature

(see e.g. Sibbertsen; 2004). This brings us to the findings of Perron and Wada (2009), who

argue that the long-run component of log US real GDP is a deterministic trend with

structural breaks, thereby supporting the spurious long memory interpretation. While in

particular smooth fractionally integrated processes are well approximated by deterministic

processes with structural breaks and vice versa (Diebold and Inoue; 2001; Sibbertsen;

2004), they can be distinguished by accounting for low frequency contaminations in the

estimation of the integration order and testing for d = 0 (Hou and Perron; 2014), and

by utilizing the different slope of the periodogram of long memory and spurious long

memory processes in the neighborhood of the zero frequency and testing against spurious

long memory (Qu; 2011; Kruse; 2015). In addition, the number of breaks diverges as

n→∞ when the long-run component of GDP is a fractionally integrated process, so that

additional breaks should turn up when the model of Perron and Wada (2009) is estimated

for a larger sample.

Figure 2 plots the trend-cycle decomposition as suggested by Perron and Wada (2009)

and gives a first hint on the the stochastic nature of the long-run component. While the

decomposition with a trend break after 1973:1 provides a reasonable explanation of the

short- and long-run dynamics until the end of the 20th century, which is the sample size

considered by Perron and Wada (2009), this is not the case for the 21st century. There, the

estimated cycle is strictly positive until the Great Recession, from which on it decreases

until the end of the sample, implying that the Great Recession never ended. Of course, the

decomposition could be fixed by adding additional trend breaks. However, the incidence

of additional breaks is a first sign for the presence of fractional trends.

The stochastic nature of long-run log GDP can ultimately be assessed up to a certain

level of statistical significance by means of the modified local Whittle estimator for d as

proposed by Hou and Perron (2014) that is robust to random level shifts among others.

The estimator, which requires to take first differences of log GDP for the trend-breaks to

become level shifts and for the integration order to be below 0.5, should return an estimate

for d that is statistically indistinguishable from zero given that the long-run component

of log GDP is deterministic. Conversely, a rejection of the hypothesis H0 : d = 0 implies
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Figure 2: Trend-cycle decomposition according to Perron and Wada (2009). The left plot
sketches log US real GDP (solid) together with the fitted values from the regression of log
US real GDP on a linear trend with a break after 1973:1 (dashed), while the right plot
shows the residuals. Shaded areas correspond to NBER recession periods.

that GDP is driven by a fractionally integrated long-run component given a certain level

of statistical significance.

While the method of Hou and Perron (2014) allows to test against fractional integration,

the test against spurious long memory of Qu (2011) and its modification of Kruse (2015)

test for fractional integration under the null hypothesis and against spurious fractional

integration generated by structural breaks under the alternative. The latter two tests

utilize the different behavior of the two aforementioned processes over different frequency

bands local to zero, do not require to specify the number of breaks or the break dates,

and exhibit favorable size and power properties compared to other structural break tests

proposed in the literature, see Qu (2011, ch. 6). The only difference in the tests of Qu

(2011) and Kruse (2015) is that the latter takes fractional differences according to the

estimated d of Hou and Perron (2014) which is shown to increase the power. If long-run

GDP is driven by a fractionally integrated process, then the two tests should not reject

the null hypothesis. Conversely, a rejection of the null hypothesis implies a that GDP is

driven by spurious long memory generated by structural breaks, given a certain level of

statistical significance.

Since all aforementioned methods are spectral-based, they require to choose the relevant

number of frequencies m around the origin for the estimation of the periodogram, and we

follow the authors’ suggestions in choosing m. However, the results are robust to different

choices of m.
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For the first difference of log US real GDP the modified local Whittle estimator of

Hou and Perron (2014) with m = bn0.8c yields an estimated integration order of 0.2753

(standard error: 0.0513). Since the estimator is asymptotically normally distributed, a 99%

confidence interval for the integration order is [0.1432, 0.4075] and clearly the hypothesis

that GDP is I(0) around a deterministic trend with structural breaks is rejected. Thus,

with probability close to one log US real GDP is fractionally integrated, and the estimates

support an integration order of around 1.3 for the levels. In addition, the spectral-based

test of Qu (2011) against spurious fractional integration yields a test statistic of 0.8397,

which is smaller than even the 10% critical value (1.022) as stated in Qu (2011). Thus, the

test fails to reject the null hypothesis of long memory against the alternative of structural

breaks on any conventional level of significance. The modified test of Kruse (2015) yields

a test statistic of 0.2482 that is even smaller than in the non-modified test of Qu (2011)

and has the same critical values. Thus, it again fails to reject the null hypothesis of

fractional integration against the alternative of structural breaks. Consequently, while

there is comprehensive evidence for log US real GDP being integrated of order around 1.3,

there is no evidence for the presence of structural breaks as soon as fractional integration

is allowed for.

The fractional hypothesis that long-run log US real GDP is a fractionally integrated

process with integration order greater than one thus does not only well explain the results

of Morley et al. (2003), Perron and Wada (2009), and Kamber et al. (2018), but is also

supported by the above test results against spurious fractional integration generated by

structural breaks. As standard UC models do not capture fractionally integrated processes

but restrict the integration order to a fixed integer that is assumed to be known, a new UC

model that treats d as a continuous random variable and thus allows for fractional trends

is of order and will be derived in the next section. This model encompasses the bulk of

UC models in the literature, makes comparably weak assumptions on the underlying long-

and short-run shocks, and thus allows for a more reliable decomposition of GDP into its

long- and short-run component. In addition, it solves the problem of downward-biased

estimates for d from non-parametric estimators as those of Shimotsu (2010) and Geweke

and Porter-Hudak (1983) due to the small ratio Var(ηt)/Var(εt), see Sun and Phillips

(2004), by explicitly modelling the short-run dynamics.

3 A fractional trend-cycle decomposition

For the trend-cycle decomposition

yt = τt + ct, t = 1, ..., n, (2)
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to be suitable to fractionally integrated processes yt, we specify the long-run component

τt as a combination of a linear deterministic process and a fractionally integrated series

τt = µ0 + µ1t+ xt, ∆d
+xt = ηt, (3)

where µ0 and µ1 are constants, d ∈ R+, and ηt are the long-run shocks that will be defined

in (6) below. The specification (3) generalizes the UC literature, where the integration

order of τt (and thus also of yt) is typically restricted to d = 1 (e.g. Harvey; 1985; Morley

et al.; 2003), implying that xt is a random walk, or to d = 2 (e.g. Clark; 1987; Oh and

Zivot; 2006). The fractional difference operator ∆d is defined as

∆d = (1− L)d =
∞∑
j=0

πj(d)Lj, πj(d) =


j−d−1
j

πj−1(d) j = 1, 2, ...,

1 j = 0,
(4)

and a +-subscript denotes a truncation of an operator at t ≤ 0, e.g. for an arbitrary process

zt, ∆d
+zt =

∑t−1
j=0 πj(d)zt−j (Johansen; 2008, def. 1). The fractional long-run component xt

adds flexibility to the weighting of past shocks for d ∈ R+ and nests the classic integer-

integrated specifications for d ∈ N. The memory parameter d determines the rate at which

the autocovariance function of xt decays, and a higher d implies a slower decay. For d < 1

xt is mean-reverting, while d ∈ [1, 2) yields the aggregate of a mean-reverting process.

Throughout the paper, we adopt the type II definition of fractional integration (Marinucci

and Robinson; 1999) that assumes deterministic starting values for all fractional processes,

and, as a consequence, allows for a smooth treatment of the asymptotically stationary

(d < 0.5) and the nonstationary (d ≥ 0.5) case. Due to the type II definition of fractional

integration the inverse of the fractional difference operator ∆−d+ = (1− L)−d+ exists for all

d, so that we can write xt = ∆−d+ ηt =
∑t−1

j=0 πj(−d)ηt−j with πj(−d) as given in (4). From

this, it becomes clear that τt in (3) is a type II fractionally integrated process of order d

generated by the long-run shocks η1, ..., ηt, where the weights πj(−d) decrease in j if d < 1,

are constant and equal to one if d = 1, and increase in j if d > 1.

Turning to the transitory component, we allow for an AR(p) process in the fractional

lag operator

φ(Ld)ct = εt, (5)

where φ(Ld) = 1−φ1Ld− ...−φpLpd, Ld = 1−∆d is the fractional lag operator (Johansen;

2008, eq. 2), and εt are the short-run shocks that will be defined in (6) below. For stability

of the fractional lag polynomial φ(Ld) the condition of Johansen (2008, cor. 6) is required

to hold. It implies that the roots of |φ(z)| = 0 lie outside the image Cd of the unit disk
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under the mapping z 7→ 1− (1−z)d. In fractional models Ld plays the role of the standard

lag operator L1 = L, since (1 − Ld)xt = ∆dxt ∼ I(0). While for an arbitrary process zt

the standard lag operator Lzt = (1 − (1 − L))zt = zt − ∆zt subtracts an I(−1) process

from zt, the fractional lag operator Ldzt = (1− (1−Ld))zt = zt−∆dzt subtracts an I(−d)

process. In addition, Ldzt = −
∑∞

j=1 πj(d)zt−j is a weighted sum of past zt, and hence Ld

qualifies as a lag operator. By definition, the filter φ(Ld) preserves the integration order

of a series since d > 0.

Turning to the long- and short-run shocks ηt, εt, we assume that they are white noise

with finite third and fourth moments and a non-diagonal covariance matrix Q, implying

E

(
ηt

εt

)
= 0, Var

(
ηt

εt

)
= Q =

[
σ2
η σηε

σηε σ2
ε

]
, Cov

[(
ηt

εt

)
,

(
ηt−s

εt−s

)]
= 02,2 ∀s 6= 0. (6)

This is somewhat more general than the bulk of the literature on UC models that requires

the shocks to be Gaussian white noise (e.g. Morley et al.; 2003; Perron and Wada; 2009).

The white noise assumption is required for the disturbances of the reduced form to ag-

gregate to a moving average process via Grangers lemma (Granger and Morris; 1976), as

will become clear in (8) and (18) below. Note that the model allows for contemporaneous

correlation between trend and cycle innovations, ρ = Corr(ηt, εt) 6= 0.

Our UC model in (2), (3), (5), and (6) is very general in terms of its long-run dynamic

characteristics, as it nests the well-known framework of Harvey (1985) for d = 1, σηε = 0,

where the long-run component is a random walk with drift, and ct is an autoregressive

process of finite order. Correlated shocks as in Balke and Wohar (2002), Morley et al.

(2003), and Weber (2011) are explicitly allowed. For d = 2, one obtains the double-drift

model of Clark (1987), and a fractional plus noise decomposition as proposed in Harvey

(2007) for stochastic volatility modelling is obtained by setting d ∈ R+, p = 0. As will

become clear in section 5, the model can easily be enriched to encompass trend breaks as

in Perron and Wada (2009).

One interesting property of the fractional UC model is that it can be interpreted as

a generalization of the decomposition of Beveridge and Nelson (1981) to the fractional

domain. To see this, plug (3) and (5) into (2) and take fractional differences. Then

∆d
+(yt − µ0 − µ1t) = ηt + ∆d

+φ(Ld)
−1εt, (7)

where φ(Ld)
−1 exists since φ(Ld) is stable. For an arbitrary zt, define ∆d

−zt = ∆dzt−∆d
+zt

as the fraction of the polynomial ∆d that is truncated away, and note that for an I(0)

process zt, ∆d
−zt =

∑∞
j=t πj(d)zt−j = op(1) since πj(d) = O(j−d−1) (Hassler; 2018, eq. 5.25).

We denote r(t, d, φ) = −∆d
−φ(Ld)

−1εt = op(1) and write ∆d
+φ(Ld)

−1εt = ∆dφ(Ld)
−1εt +
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r(t, d, φ) = (1 − Ld)φ(Ld)
−1εt + r(t, d, φ) = θε(Ld)εt + r(t, d, φ), with θε(Ld) = (1 −

Ld)φ(Ld)
−1 as an infinite MA polynomial in the fractional lag operator which follows since

φ(Ld) is invertible. Plugging this result into (7) then yields an ARFIMA model in the

fractional lag operator Ld

∆d
+(yt − µ0 − µ1t) = ηt + θε(Ld)εt + r(t, d, φ) = θu(Ld)ut + r(t, d, φ), (8)

where ut is white noise with Var(ut) = σ2
u = σ2

η + σ2
ε + 2σηε, and θu(Ld) = 1 +

∑∞
j=1 θ

u
jL

j
d.

The last equality in (8) follows from the aggregation properties of MA processes in the

fractional lag operator with white noise innovations, as shown in appendix C.1 where also

a recursive formula for the θuj is derived. For the particular case in (8), where a white

noise process is added to an MA process in the fractional lag operator, it follows that

θuj = θεj(σε/σu), j = 1, 2, ....

From (8) the fractional Beveridge-Nelson decomposition follows directly

∆d
+(yt − µ0 − µ1t) = θu(Ld)ut + r(t, d, φ) = θu(1)ut − (1− Ld)

∞∑
k=0

Lkdut

∞∑
j=k+1

θuj + r(t, d, φ),

so that multiplication with ∆−d+ yields the long- and short-run components

xBNt = ∆−d+ θu(1)ut = xt, cBNt = −
∞∑
k=0

Lkdut

∞∑
j=k+1

θuj = ct, (9)

where we use ∆−d+ r(t, d, φ) = 0, since r(t, d, φ) only depends on εj, j ≤ 0, and thus all

coefficients in ∆−d+ attached to r(t, d, φ) are zero. While it was shown by Morley et al.

(2003) that the UC model in (2), (3), and (5) has a Beveridge-Nelson decomposition for

d = 1, this carries over directly to the fractional case. xBNt and cBNt are identical to the

unobserved components in (3) and (5) for any d, which follows immediately from plugging

Ld = 1 in (8) and multiplying with ∆−d+ , since θε(Ld) = (1−Ld)φ(Ld)
−1 is zero for Ld = 1

and ∆−d+ r(t, d, φ) = 0. Consequently, the fractional trend-cycle decomposition generalizes

the I(1) Beveridge-Nelson decomposition to the class of ARFIMA models in the fractional

lag operator.

4 Estimation

With the fractional UC model of section 3 at hand, we next consider the estimation of the

unknown model parameter vector θ = (d, φ1, ..., φp, σ
2
η, σηε, σ

2
ε)
′ and the latent components

xt, ct in (2), (3), (5), and (6).

11



In subsection 4.1 parameter estimation is carried out by means of the quasi maximum

likelihood (QML) estimator based on the prediction error form of the UC model, which

is in line with the methodological UC literature, see e.g. Durbin and Koopman (2012, ch.

7.2). To arrive at the prediction error form, we derive an estimator for the conditional

expectations of the latent xt, ct, given the parameters θ and the data until the preceding

period y1, ..., yt−1. Given all data available y1, ..., yn and a parameter vector θ, we intro-

duce a single-step estimator for the conditional expectations of xt, ct. The estimators for

the conditional expectations of xt, ct are shown to be identical to the Kalman filter and

smoother but are computationally more efficient for the fractional UC model. For em-

pirical researchers, the results derived in subsection 4.1 are sufficient to fully estimate all

unknown terms in the fractional UC model.

The remaining two subsections 4.2 and 4.3 are to show identification and to ensure that

the QML estimator is consistent and asymptotically normal, implying that it produces

reliable estimates in large samples, that standard inference is valid for hypothesis testing,

and that the Kalman smoother is asymptotically the minimum variance linear unbiased

estimator (MVLUE) for xt, ct, given the data y1, ..., yn.

The asymptotic results in subsection 4.3 are not only important for the fractional UC

model itself, but also fill a gap in the literature on integer-integrated UC models that

are nested in our setup. There, e.g. in Morley et al. (2017), it is argued that consistency

of the QML estimator for integer-integrated UC models follows from the reduced form

being nested in the class of ARMA models, where consistency of the QML estimator is

well established (see e.g. Pötscher; 1991). However, this is not sufficient, as UC models

have implicit restrictions on the parameters of the reduced form ARMA models. While of

course the reduced form parameters of an integer-integrated UC model can be consistently

estimated by a QML estimator for ARMA models, for the asymptotic properties of the

QML-ARMA-estimator to carry over to the prediction-error-form QML estimator of UC

models a continuous mapping theorem is required to hold. To the best of our knowledge,

the literature on integer-integrated UC models lacks such a proof. Consequently, the results

in subsection 4.3 also establish consistency and asymptotic normality for integer-integrated

UC models, which so far has only been assumed, and give an analytical expression for the

Fisher information matrix.

In the following, we denote the data-generating parameter vector θ0 ∈ Θ. Θ = D×Φ×Ω

is the parameter space with D = {d ∈ R+ : dmin ≤ d ≤ dmax}, Φ = {φ ∈ Rp : deg(φ) ≤
p, φ(0) = 1} and the stability condition as discussed below (5) holds, and Ω ⊆ R3 with the

parameter space Ω being bounded by the conditions σ2
η, σ

2
ε ≥ 0, and |Corr(ηt, εt)| < 1. We

define Ft as the σ-field generated by the observable variables y1, ..., yt. The expected value

operator Eθ(zt) of an arbitrary random variable zt denotes that expectation is taken with

12



respect to the distribution of zt given θ, so that Eθ0(zt) = E(zt). To simplify the proofs,

we assume that yt has been mean- and trend-adjusted and set µ0 = µ1 = 0, analogous to

Hualde and Robinson (2011).

4.1 Estimation of latent components and model parameters

Parameter estimation in the UC literature is typically carried out by the (quasi) maximum

likelihood estimator of the prediction error form (Durbin and Koopman; 2012, ch. 7.2),

which is defined as the (quasi) likelihood of the residual vt(θ) = yt−Eθ(yt|Ft−1) and requires

an analytical expression for the conditional expectation. The latter is obtained from the

Kalman filter, which, for any latent zt and parameter vector θ, is a recursion for calculating

Eθ(zt|Ft), Eθ(zt+1|Ft), and the corresponding conditional variances (Durbin and Koopman;

2012, ch. 4.3). In a second step, the Kalman smoother is utilized to estimate the latent

components given all the data available y1, ..., yn, and the QML estimates for θ0.

Extending this approach to the fractional UC model, we first derive analytical ex-

pressions for the conditional expectations Eθ(xt|Ft−1), Eθ(ct|Ft−1) that are identical to the

Kalman filter but can be calculated in a single step. Given a parameter vector θ, this allows

to calculate the prediction error vt(θ) = yt −Eθ(yt|Ft−1) = yt −Eθ(xt|Ft−1)−Eθ(ct|Ft−1).

Based on vt(θ), we construct the QML estimator θ̂. Furthermore, we derive analyti-

cal expressions for the conditional expectations Eθ(xt|Fn), Eθ(ct|Fn) that are identical

to the Kalman smoother, but again only involve a single step in their calculation. To

derive Eθ(xt|Ft−1), Eθ(ct|Ft−1) for the fractional UC model in (2), (3), (5), and (6), let

y1:t = (y1, ..., yt)
′, η1:t = (η1, ..., ηt)

′, and ε1:t = (ε1, ..., εt)
′ denote the vectors collect-

ing all variables until t, and define φ(Ld)
−1 =

∑∞
j=0 ωjL

j as the stable MA polynomial

of εt. For an arbitrary zt and a parameter vector θ, the Kalman filter recursively de-

termines zt+1|t = Eθ(zt+1|Ft) = Covθ(zt+1, y1:t) Varθ(y1:t)
−1y1:t, see Durbin and Koop-

man (2012, lemma 1). For our latent components as defined in (3) and (5) it follows

from xt+1 = ∆−d+ ηt+1 =
∑t

j=0 πj(−d)ηt+1−j and ct+1 = φ(Ld)
−1εt+1 =

∑∞
j=0 ωjεt+1−j =∑t

j=0 ωjεt+1−j + op(1) that

xt+1|t(θ) =
t∑

j=1

πj(−d) Covθ(ηt+1−j, y1:t) Varθ(y1:t)
−1y1:t, (10)

ct+1|t(θ) =
t∑

j=1

ωj Covθ(εt+1−j, y1:t) Varθ(y1:t)
−1y1:t + op(1), (11)

where the op(1) term in (11) results from the truncation of the sum for indexes j ≤ 0

where yj is unobservable. As it is asymptotically negligible it will be omitted in the
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following. The terms Covθ(ηt−j, y1:t), Covθ(εt−j, y1:t), with j ≥ 0, and Varθ(y1:t) solely

depend on the parameter vector θ. From (7) we obtain yt = ∆−d+ ηt + φ(Ld)
−1εt =∑t−1

j=0 πj(−d)ηt−j +
∑∞

j=0 ωjεt−j. Then Covθ(yt, ηt−j) = πj(−d)σ2
η +ωjσηε, Covθ(yt, yt−j) =∑t−j−1

k=0 [πk(−d)πk+j(−d)σ2
η+(ωkπk+j(−d)+πk(−d)ωk+j)σηε+ωkωk+jσ

2
ε ]+op(1), and finally

Covθ(yt, εt−j) = πj(−d)σηε + ωjσ
2
ε , for all j ≥ 0, so that

Var

η1:t

ε1:t

y1:t

 =

 σ2
ηI σηεI Ση1:ty1:t

σηεI σ2
εI Σε1:ty1:t

Σ ′η1:ty1:t Σ ′ε1:ty1:t Σy1:t

 , Var

η1:t

ε1:t

y1:n

 =

 σ2
ηI σηεI Ση1:ty1:n

σηεI σ2
εI Σε1:ty1:n

Σ ′η1:ty1:n Σ ′ε1:ty1:n Σy1:n

 ,
where Ση1:ty1:t = Covθ(η1:t, y1:t), Ση1:ty1:n = Covθ(η1:t, y1:n), Σε1:ty1:t = Covθ(ε1:t, y1:t), Σε1:ty1:n =

Covθ(ε1:t, y1:n), Σy1:t = Varθ(y1:t), and Σy1:n = Varθ(y1:n) with entries as given above. Let

ej(t) be a t-dimensional unit vector with a one at column j and zeros elsewhere. Then the

estimators for the conditional expectations as defined in (10) and (11) are

xt+1|t(θ) =
t∑

j=1

πj(−d)et+1−j(t)Ση1:ty1:tΣ
−1
y1:t
y1:t, (12)

ct+1|t(θ) =
t∑

j=1

ωjet+1−j(t)Σε1:ty1:tΣ
−1
y1:t
y1:t, (13)

and can easily be calculated with θ, y1:t at hand. They are identical to the Kalman filter

but do not involve any recursions (Durbin and Koopman; 2012, ch. 4.1).

The Kalman smoother recursively calculates Eθ(xt|Fn), Eθ(ct|Fn), for which an ana-

lytical expression follows directly from (12) and (13)

xt|n(θ) =
t−1∑
j=0

πj(−d)et−j(t)Ση1:ty1:nΣ−1
y1:n

y1:n, (14)

ct|n(θ) =
t−1∑
j=0

ωjet−j(t)Σε1:ty1:nΣ−1
y1:n

y1:n. (15)

The single-step calculation of (12), (13), (14), and (15) somewhat differs from the standard

computation of the Kalman filter and smoother in the literature, where a model is cast

in state space form to sequentially calculate the Kalman recursions, as described e.g. in

Durbin and Koopman (2012, ch. 4.3 and 4.4). While both approaches yield identical results

and only differ in their computation, the natural reason for the recursive calculation of

the Kalman filter is to avoid the computationally intensive inversion of the n × n matrix

Σy1:n . However, computational gains from the recursive calculation of the Kalman filter

crucially depend on the dimension of the state vector, which itself depends on the dynamic
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specification of the latent components. Since xt and ct each require a state vector that is at

least of dimension n−1 when cast in state space form, we found the single-step calculation

of the Kalman filter and smoother to be much faster for the fractional UC model.

From (12) and (13), an objective function for the QML estimator θ̂ can be constructed

via the prediction error

vt(θ) = yt − xt|t−1(θ)− ct|t−1(θ) = yt − Eθ(yt|Ft−1), (16)

and is given by

θ̂ = arg max
θ∈Θ

1

n

n∑
t=1

lt(θ), lt(θ) = −1

2
log σ2

v −
1

2σ2
v

v2
t (θ). (17)

As will be shown in subsection 4.3, σ2
v = σ2

η + σ2
ε + 2σηε = σ2

u, so that the QML estimator

(17) is fully specified. With the single-step formulas for the Kalman filter in (12) and (13)

at hand, the model parameters can be estimated via the QML estimator in (17), while the

latent components are estimated via the single-step Kalman smoother given θ̂, see (14)

and (15).

However, for the QML estimator in (17) to asymptotically yield reliable estimates, it

remains to be shown that θ̂
p−→ θ0 as n diverges, implying that the QML estimator is

consistent. In addition, asymptotic normality of the QML estimator needs to be shown

for standard inference to be valid for hypothesis testing. Since the objective function of

the QML estimator in (17) is quite inconvenient to establish the asymptotic properties,

we tackle them based on a reduced form representation of the fractional UC model in

the following two subsections. As they are quite technical, we briefly summarize the key

findings and their implications.

In subsection 4.2, we show that the fractional UC model is uniquely identified for any

degree p of the polynomial φ(Ld) whenever d 6= 1, and for any p > 1 when d = 1, implying

that the objective function in (17) has a unique maximum. Subsection 4.3 then demon-

strates that the reduced form prediction error as given in (24) below is identical to the

Kalman-filter-based prediction error in (16), and also the parameter spaces are identical.

Therefore, the Kalman-filter-based QML estimator θ̂ in (17) and the reduced-form-based

QML estimator as given in (25) are identical, implying that their asymptotic properties

will also be identical. Consistency and asymptotic normality are then established in the-

orems 4.1 and 4.2. Consequently, (14) and (15) asymptotically are the minimum variance

linear unbiased estimators for the conditional expectations of xt+1 and ct+1 given y1, ..., yn

when the Kalman smoother is evaluated at θ̂, see Durbin and Koopman (2012, lemma 2).
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4.2 Identification

To show identification of the fractional UC model, we first derive the reduced form of (2),

(3), (5), and (6), which is an ARFIMA model in the fractional lag operator. To see this,

multiply (7) with φ(Ld) to obtain

φ(Ld)∆
d
+yt = φ(Ld)ηt + ∆d

+εt = φ(Ld)ηt + (1− Ld)εt −∆d
−εt = ψ(Ld)ut −∆d

−εt, (18)

where ψ(Ld) = φ(Ld)θ
u(Ld) is a moving average polynomial of infinite order that results

from the aggregation of φ(Ld)ηt+(1−Ld)εt. Its existence together with a recursive formula

for the coefficients ψj is shown in appendix C.1. As before, ut holds the disturbances of

the reduced form and is white noise with Var(ut) = σ2
u = σ2

η + σ2
ε + 2σηε, which follows

from Granger and Morris (1976, p. 248f) for contemporaneously dependent white noise

processes εt, ηt.

While aggregating MA processes in the standard lag operator yields an MA process

whose lag length equals the maximum lag order of its aggregates, this does not hold in

general for the aggregation of MA processes in the fractional lag operator Ld, since Lidut,

Ljdut are not independent for i, j > 1, i 6= j. Only for p = 1 equation (18) asymptoti-

cally becomes an ARFIMA(1, d, 1) model in the fractional lag operator, since ηt + εt and

Ld(φ1ηt + εt) are independent. For d ∈ N the model in (18) nests the integer-integrated

ARIMA models. Due to the inclusion of the fractional lag operator (18) differs from the

standard ARFIMA model. Nonetheless, (18) exhibits an ARFIMA representation in L as

φ(Ld), ψ(Ld) can be written as stable polynomials in the standard lag operator L, see (21)

and (22) below.

Since yt is unobserved for t ≤ 0, an estimator for θ will necessarily be based on a

truncated representation of (18) where all random variables indexed by t ≤ 0 will be set

to zero. As before, we denote this truncation with a +-subscript and define ut(θ) as the

residual given θ. (18) then becomes

φ+(Ld)∆
d
+yt = ψ+(Ld)ut(θ). (19)

While d, φ1, ..., φp are directly identified from the reduced form (19), it remains to be

shown that σ2
η, σηε, σ

2
ε can be uniquely recovered from (19) by matching the autocovariance

functions of ψ+(Ld)ut(θ) and φ+(Ld)ηt + (1− Ld)+εt.

To match the autocovariance functions, we rewrite φ(Ld), ψ(Ld) as polynomials in the
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standard lag operator L. With regard to the first polynomial one has

φ(Ld) = 1−
p∑
j=1

φj(1−∆d)j = 1−
p∑
j=1

φj

j∑
k=0

(
j

k

)
(−1)k∆dk

= (1− φ1 − ...− φp)−
p∑
j=1

(−1)j
p∑
k=j

φk

(
k

j

) ∞∑
i=0

πi(dj)L
i

= 1−
p∑
j=1

(−1)j
p∑
k=j

φk

(
k

j

) ∞∑
i=1

πi(dj)L
i, (20)

where the second step uses the binomial theorem, the third step rearranges the sums,

and the fourth step utilizes π0(b) = 0 for all b, so that
∑p

j=1(−1)j
∑p

k=j φk
(
k
j

)
π0(dj) =∑p

j=1(−1)j
∑p

k=j φk
(
k
j

)
= φ1 + ...+ φp. It then follows from (20) that

φ(Ld) = φ̃(L) = 1−
∞∑
l=1

φ̃lL
l, φ̃l =

p∑
j=1

(−1)jπl(dj)

p∑
k=j

φk

(
k

j

)
, (21)

and analog for ψ(Ld)

ψ(Ld) = ψ̃(L) = 1 +
∞∑
l=1

ψ̃lL
l, ψ̃l =

p∑
j=1

πl(dj)

p∑
k=j

ψk

(
k

j

)
. (22)

From (19), (21), and (22) it follows that

Cov(φ+(Ld)ut, φ+(Ld)ut−k) = σ2
uγ

u
k (t) = σ2

ηγ
η
k(t) + σ2

εγ
ε
k(t)− σηεγ

ηε
k (t),

with γuk (t) =
∑t−k−1

j=0 ψ̃jψ̃j+k, γ
η
k(t) =

∑t−k−1
j=0 φ̃jφ̃j+k, γ

ε
k(t) =

∑t−k−1
j=0 πj(d)πj+k(d), and

γηεk (t) =
∑t−k−1

j=0

(
φ̃jπj+k(d) + φ̃j+kπj(d)

)
where φ̃0 = −1. Thus, the model is identified if

A in γ
u
0 (t)

γu1 (t)

γu2 (t)

σ2
u = A

σ2
η

σηε

σ2
ε

 , A =

γ
η
0 (t) γηε0 (t) γε0(t)

γη1 (t) γηε1 (t) γε1(t)

γη2 (t) γηε2 (t) γε2(t)

 ,
has full rank, so that it is invertible and σ2

η, σηε, σ
2
ε can be uniquely recovered from γu0 (t),

γu1 (t), γu2 (t). Note that A only has reduced rank if cφ̃j = πj(d) for any constant c and all

j or if one of the three rows in A is zero. The former case is excluded by the definition

of φ(Ld) as otherwise φ(Ld) would not generate an I(0) cycle. For the latter case, note

that for any d ∈ R+ \ {1}, πj(d) 6= 0 for all j = 0, 1, 2, so that γεk, γ
ηε
k 6= 0 for d 6= 1,

k = 0, 1, 2. Thus, for d 6= 1 the model is identified for any degree of the polynomial
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φ(Ld). A special case occurs for d = 1, where the fractional UC model becomes an I(1)

UC model as considered in Morley et al. (2003). There, γε2(t) = 0, since all πj(1) = 0 for

j > 1, so that for the model to be identified it is required that γη2 (t) 6= 0, which holds

for all p ≥ 2. Thus, the model is identified for all p ≥ 0 if d 6= 1, and identified for all

p ≥ 2 if d = 1. Contrary to the I(2)-model of Oh et al. (2008) with three shocks that

requires p ≥ 4, our model is identified for any p ≥ 0 when d = 2, which follows from

πj(2) 6= 0 for j ≤ 2. Consequently, the fractional UC model allows for a parsimonious

parametrization compared to the correlated UC model of Morley et al. (2003) and can be

applied to processes with p < 2 whenever d 6= 1.

4.3 Consistency and asymptotic normality

Having shown that the model is identified, we next derive the asymptotic properties of

the QML estimator based on the reduced form that will be shown to be identical to the

Kalman-filter-based QML estimator θ̂ in (17). To derive the likelihood function, we solve

the reduced form equation (19) for the residual ut(θ) and obtain

ut(θ) = ψ+(Ld)
−1φ+(Ld)∆

d
+yt, (23)

where ut(θ) is the reduced form prediction error that depends on the parameter vector θ

and ut(θ0) = ut. ut(θ) qualifies as the prediction error since the one-step ahead prediction

of yt, given the information until the preceding period Ft−1, yields an error

yt − Eθ(yt|Ft−1) = yt − Eθ

[
−(ψ+(Ld)

−1φ+(Ld)∆
d
+ − 1)yt|Ft−1

]
= yt + (ψ+(Ld)

−1φ+(Ld)∆
d
+ − 1)yt = ut(θ), (24)

where in the second step it was used that (ψ+(Ld)
−1φ+(Ld)∆

d
+ − 1)yt is Ft−1-measurable

since ψ(0) = φ(0) = 1 so that yt cancels out and the term only consists of lagged y1, ..., yt−1

that are contained in Ft−1. From (24) it follows directly that the reduced form prediction

error ut(θ) is identical to the Kalman-filter-based prediction error vt(θ) given in (16), since

ut(θ) = yt − Eθ(yt|Ft−1) = yt − xt|t−1 − ct|t−1 = vt(θ).

In line with the literature on unobserved components models, we define the objective

function of the maximum likelihood estimator as the quasi log likelihood of the prediction

error (23) for our model in (2), (3), (5), and (6)

θ̂ = arg max
θ∈Θ

1

n

n∑
t=1

lt(θ), lt(θ) = −1

2
log σ2

u −
1

2σ2
u

u2
t (θ), (25)
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where lt(θ) is the profile log likelihood of the normal distribution and σ2
u = σ2

η + σ2
ε + 2σηε.

Since the parameter space Θ in (25) is identical to the parameter space as considered in

(17), and since ut(θ) = vt(θ), it follows directly the two estimators in (17) and (25) are

identical, with (25) being more convenient for the analysis of the asymptotic properties of

the QML estimator.

The asymptotic properties of the QML estimator are summarized in theorems 4.1 and

4.2, where the former theorem establishes consistency and the latter considers asymptotic

normality. The proofs are contained in appendix C.2, and a brief explanation of each proof

is given below the respective theorem.

Theorem 4.1. The maximum likelihood estimator for θ0 of the fractional UC model in

(2), (3), (5), and (6) is consistent, θ̂
p−→ θ0 as n→∞.

In the proof of 4.1 we face the following challenges. First, ut(θ) as given in (23) is

integrated of order I(d0−d), and thus is stationary for d0−d < 0.5, and nonstationary for

d0 − d ≥ 0.5. While in the former case it can be shown that a uniform weak law of large

numbers applies to the objective function, yielding uniform convergence in probability on

any compact subset of d0 − d < 0.5, this does not hold for the nonstationary case. There,

under additional assumptions a functional central limit theorem applies to the objective

function, and the rate of convergence of the QML estimator can be shown to depend on the

integration order d0 − d. Since the asymptotic behavior of the objective function changes

around d0 − d = 0.5, the objective function does not uniformly converge in probability on

the set of admissible values for d. Fortunately, for a broad class of multivariate ARFIMA

processes, that also contains our fractional UC model, it was shown by Nielsen (2015) that

the relevant parameter space reduces to the region d0−d < 0.5 asymptotically, where ut(θ)

is stationary. Thus, we solve the problem of different limiting behavior of the objective

function in the stationary and the nonstationary region by showing that the results of

Nielsen (2015) carry over to the fractional UC model, so that attention can be restricted

to the case where d0 − d < 0.5.

The second challenge is to show that the objective function converges uniformly on

Θ given that d0 − d < 0.5, which implies that the objective function satisfies a uniform

weak law of large numbers (UWLLN). While pointwise convergence in probability of the

objective function follows directly from the weak law of large numbers for stationary pro-

cesses, uniform convergence is more difficult to establish. Following Wooldridge (1994,

th. 4.2), pointwise convergence can be strengthened to uniform convergence if the partial

derivatives of the objective function w.r.t. θ satisfy a weak law of large numbers, implying

that they are dominated uniformly by a random variable that is Op(1) (Newey; 1991, cor.

2.2). By carefully studying the partial derivatives of lt(θ) we show that a weak law of large
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numbers applies, so that a UWLLN holds for the objective function. Given that the model

is identified as shown in section 4.2, consistency for the QML estimator follows directly

(Wooldridge; 1994, th. 4.3).

With the consistency result at hand, we are able to derive the asymptotic distribution

of the QML estimator, where theorem 4.2 summarizes the results.

Theorem 4.2. The maximum likelihood estimator for θ0 of the fractional UC model in

(2), (3), (5), and (6) is asymptotically normal,
√
n(θ̂− θ0)

d−→ N(0, Ω−1
0 ) as n→∞, and

Ω0 is the Fisher information matrix.

The proof is contained in appendix C.2 and is carried out by considering a Taylor

expansion of the score function at θ0. We first show that a central limit theorem applies

to the score function at θ0. Next, to evaluate the Hessian matrix in the Taylor expansion

at θ0, we prove that a UWLLN holds for the Hessian matrix by showing that the the

Hessian matrix itself and its first partial derivatives satisfy a weak law of large numbers.

From Wooldridge (1994, th. 4.2) it then follows that the QML estimator θ̂ is asymptoti-

cally normally distributed with the asymptotic variance being equal to the inverse Fisher

information matrix, see (70).

5 Fractional trends and cycles in US GDP

With the fractional UC model of section 3 and estimators for the unknown parameters

and latent components as derived in section 4 at hand, we can now estimate a fractional

trend-cycle decomposition for log US real GDP, where several advantages of the model

directly become apparent.

First, as already discussed in section 2, state-of-the-art UC models as suggested by

Balke and Wohar (2002), Morley et al. (2003), Perron and Wada (2009), and Kamber

et al. (2018) either yield implausible trend-cycle decompositions that contradict the NBER

chronology, or are misspecified in terms of the long-run dynamic properties, so that the

business cycle estimate (i.e. the estimated cyclical component ĉt|n) is unreliable. The

fractional UC model takes into account the evidence for fractional integration in log US real

GDP contained in section 2 and thus allows for a reliable estimation of the business cycle,

particularly as it nests the aforementioned models. Second, results from the fractional UC

model extend the empirical literature by providing new insights on the data-generating

mechanism of log US real GDP. In particular, treating the integration order d as a random

variable allows to draw inference on the persistence of long-run shocks. As the model

encompasses integer-integrated UC models with autoregressive cycles, point hypotheses

like d = 1 can be tested to see whether UC models as e.g. those of Harvey (1985), Balke
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and Wohar (2002), Morley et al. (2003), and Kamber et al. (2018) match the long-run

dynamics of GDP. Third, the model allows to investigate whether stochastic UC models

with correlated long- and short-run shocks are able to explain the NBER chronology. If

so, then implausible estimates from integer-integrated correlated UC models are caused

by a violation of the I(1) hypothesis. Fourth, estimates from the fractional UC model can

be compared to those of a model with a deterministic long-run component and structural

breaks as suggested by Perron and Wada (2009). While the latter is clearly misspecified

for log US real GDP, as shown in section 2, it may still provide a good approximation

to the fractional long-run component of log US real GDP based on a simple model. And

fifth, from a methodological perspective the endogenous treatment of the integration order

neither requires assumptions about the persistence of a series nor prior unit root testing

or differencing.

While decomposing GDP is clearly the key application of UC models, trend-cycle de-

compositions of several other macroeconomic aggregates have been considered in the liter-

ature. The interested reader is referred to appendix B, where applications of the fractional

UC model for industrial production, investment, consumption, and employment are con-

sidered that highlight the benefits of our flexible, data-driven method to treat permanent

and transitory components in macroeconomic applications.

The data on seasonally and inflation adjusted US GDP was downloaded from the

Federal Reserve Bank of St. Louis (mnemonic: GDPC1), is in quarterly frequency, spans

from 1947:1 to 2020:1, and was log-transformed. It was trend- and mean-adjusted based

on the exact local Whittle estimator of Shimotsu (2010), which allows for deterministic

trends and yields an estimate d̃ for the integration order. Estimates for µ0, µ1 in (3) were

then obtained via the least squares regression

∆d̃
+ logGDPt = µ0∆d̃

+1 + µ1∆d̃
+t+ errort, t = 1, ..., n. (26)

The trend-adjusted series yt = logGDPt − µ̂0 − µ̂1t then enters the UC model as the

observable variable.

For the QML estimation of θ0 via (17) we draw 100 combinations of starting values

from uniform distributions with appropriate support and maximize the quasi log likelihood

of the fractional UC model via the Nelder-Mead algorithm. The lag order is set to p = 1 as

this minimizes both, the Bayesian Information Criterion (BIC) and the Akaike Information

Criterion (AIC) for p ∈ {1, ..., 8}, where the effective number of observations is held fixed

according to Ng and Perron (2005). However, we also report estimation results for p = 4

to show that both, the estimates for θ0 and the decomposition into xt and ct are robust to

the choice of higher p.
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p = 1 p = 4
estimate std. error estimate std. error

d̂ 1.3365 0.1360 1.2697 0.1577
σ̂2
η 0.1193 0.1726 0.1578 0.1774
σ̂ηε -0.4021 0.3861 -0.4193 0.3224
σ̂2
ε 1.4757 0.6334 1.3944 0.4714

φ̂1 0.8417 0.0449 0.9302 0.0987

φ̂2 -0.0005 0.0592

φ̂3 -0.0597 0.0391

φ̂4 -0.0052 0.0195

lt(θ̂) -370.3803 -368.9246
AIC 735.7807 744.3060
BIC 754.1815 773.7473

̂Corr(ηt, εt) -0.9584 -0.8938

Table 1: Estimation results for the fractional UC model in (2), (3), (5), and (6) for log US
real GDP via the QML estimator (17) for p = 1 and p = 4.

Table 1 displays the estimation results for p = 1 and p = 4 of the fractional UC model

in (2), (3), (5), and (6) via the QML estimator in (17), together with the log likelihoods,

the model selection criteria, and the estimated correlation between ηt and εt. The results

show that log GDP is integrated of order around 1.3, and the 95% confidence interval for

the p = 1 model is [1.0700, 1.6030], indicating that the I(1) hypothesis is likely violated.

The estimated integration order d̂ = 1.3365 implies that a long-run shock on GDP growth

has not only a contemporaneous impact, as imposed in the I(1) model, but retains 33.65%

of its initial impact after one quarter, 22.49% after two quarters, and 14.61% after one

year. It converges to zero at a hyperbolic rate, so that after four years 5.95% and after

ten years 3.20% of its initial impact remains. This suggests that long-run shocks have a

gradually decreasing impact on GDP growth, which we find intuitive, as e.g. technological

innovations are not adapted by the whole economy at a fixed point in time (as an I(1)

assumption would suggest), but rather successively, fostering the interpretation of GDP

growth as a stationary, mean-reverting fractionally integrated process of order around 0.3.

In line with the I(1) UC literature, we find that log US GDP is well explained by a small

number of cyclical lags. While Morley et al. (2003) choose p = 2, which is the smallest

number of lags they consider as their model is not identified for p = 1, see subsection

4.2, we find that p = 1 minimizes both, the AIC and the BIC. Additional lags do not

improve the overall fit of the model on a large scale, as their coefficients are rather small

and insignificant on a 5% level, see table 1. Thus, the p = 1 specification seems to be well

suited in terms of a minimal representation for log US GDP. Setting p = 1 is supported by
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figure 6, which shows that the estimated cyclical components for the fractional UC model

with p = 1 and p = 4 are almost identical, and that neither the prediction error, nor the

estimates for ηt, εt display significant autocorrelation for p = 1. For the coefficients φ̃(L) in

the standard lag operator our estimates imply ˆ̃φ1 = 1.1249, ˆ̃φ2 = −0.1893, ˆ̃φ3 = −0.0419,
ˆ̃φ4 = −0.0174 and all remaining coefficients are smaller than 0.01 in absolute value and

converge to zero rapidly. The sign-change after the first coefficient illustrates that the

fractional lag operator is capable of generating an oscillating behavior, for which standard

AR models require at least two lags.

Turning to Q̂, the QML estimator returns a relatively small variance estimate for the

long-run shocks σ̂2
η, while the short-run shock variance is estimated to be comparably large.

This suggests that the long-run component of output is relatively smooth, and a larger σ̂2
ε

yields richer cyclical dynamics, as explained e.g. in Kamber et al. (2018) who explicitly

restrict the ratio σε/ση to be large. Furthermore, the strong negative correlation between

long- and short-run shocks confirms the findings of Morley et al. (2003).
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Figure 3: Trend-cycle decomposition for log US real GDP with correlated innovations. The
left plot sketches the trend component estimate τt|n from the fractional UC model in black,
dashed, together with the time series for log US real GDP in gray, solid. The plot on the
right-hand side shows the estimated cyclical component ct|n Estimates were carried out via
the single-step Kalman smoother as discussed in section 4.1, while parameter estimates
are reported in table 1. Shaded areas correspond to NBER recession periods.

Figure 3 plots the trend-cycle decomposition from the fractional UC model, where

estimates for xt, ct are obtained from the single-step Kalman smoother as discussed in

section 4.1 and the parameter estimates θ̂ as given in table 1 for p = 1 are plugged

in for θ. Due to the small σ̂2
η the decomposition yields a smooth trend that is rather

unaffected by the recession periods. The estimated cyclical component displays a persistent
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behavior and has the shape of an asymmetric sinus curve. It gradually increases in periods

of economic recovery and prosperity, until it sharply drops during the shaded recession

periods, which is in line with economic common sense. Similar cycle estimates are obtained

from the nonlinear regime-switching UC-FP-UR model of Morley and Piger (2012). Thus,

the parsimonious parametrization of the fractional UC model together with its ability to

resemble nonlinear dynamics foster its generality.

From figure 3 it becomes clear that the fractional UC model solves the problem of

obtaining implausible cycle estimates in the integer-integrated UC literature, where esti-

mates for xt behave erratic, while estimates for ct are rather noisy, see Morley et al. (2003,

fig. 3). The underlying reason is that, given log GDP is integrated of order around 1.3,

forcing the long-run component to be I(1) upward-biases the estimate σ̂η, as the addi-

tional persistence that is not captured by the I(1) specification goes into the estimates

for the long-run innovations ηt. As UC decompositions are fully model-based, the cyclical

component needs to re-adjust for the erratic long-run shocks, yielding a noisy cycle that

does not follow a clear path in periods of economic upswing. In contrast, the fractional

UC model fully captures the persistence of log US GDP, allowing σ2
η to be small, which

yields a smooth trend estimate together with a cycle that is in line with economic common

sense. These findings are consistent with the work of Kamber et al. (2018), who obtain

plausible cycle estimates when restricting the ratio of ση/σε to be small.

Finally, we comment on the possibility of structural breaks in log US real GDP. The test

results in section 2 already provide comprehensive evidence for GDP’s long-run component

being a fractionally integrated process, while there is no evidence for the presence of

structural breaks. We substantiate these findings by including a trend break after 1973:1

into (26), so that log US real GDP is first adjusted for a constant and a linear trend

with a structural break in slope after 1973:1. Estimation is carried out as before, where

again 100 combinations of starting values are drawn for the QML estimator in (17) and

p = 1. Estimation results are contained in table 2 in appendix A and are close to the

results reported in table 1 for the fractional UC model. The integration order is again

estimated to be around 1.3, a small ratio of σ̂2
η/σ̂

2
ε is found, and correlation between

long- and short-run shocks is negative, but considerably smaller as in the purely fractional

model. Naturally the estimated variance of the long-run shocks decreases compared to

table 1, as the inclusion of a trend break after 1973:1 explains some variation of the

long-run component. Since the trend break captures some dynamics of the fractional long-

run component and is uncorrelated with the short-run shocks, this explains the smaller

correlation. However, the log likelihood when σ2
η = 0 is imposed falls by 119 points, and

the standard error of d remains small, implying that the parameter is well identified via

the long-run dynamics of log US real GDP, which would not be the case if σ2
η = 0.
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Figure 4: Fractional trend-cycle decomposition with structural breaks. The figure shows
the estimate for xt from the fractional UC model with a linear (deterministic) trend break
after 1973:1 in black, dashed, together with trend-adjusted log US real GDP in gray, solid.
Estimates were carried out via the single-step Kalman smoother as discussed in section 4.1,
while parameter estimates are reported in table 2 in appendix A. Shaded areas correspond
to NBER recession periods.

Figure 4 sketches the estimated stochastic long-run component of the fractional UC

model with a structural break after 1973:1, showing that the inclusion of a deterministic

trend break after 1973:1 reduces the variation of the estimated stochastic long-run com-

ponent considerably during the first half of our sample and explains the good fit of the

decomposition of Perron and Wada (2009), as they consider a sample until 1998:2. How-

ever, the approximation becomes worse for the second half of the sample. From the 1981

– 1982 recession on, the estimate for xt gradually increases despite the inclusion of a trend

break. Growth slows down before the early 1990s recession and recovers in the aftermath.

Around the change of the millennium the estimated long-run component becomes flat,

until it tends to decrease from 2005 on. After the Great Recession another change in

growth is visible. Consequently, the fractional long-run component survives the inclusion

of a trend break after 1973:1, and the estimated integration order is hardly affected.

From both, the test results in section 2 and the inclusion of the Perron and Wada

(2009) trend break, it follows that there is no evidence for GDP being driven by struc-

tural breaks in the linear trend, while there is comprehensive evidence for the fractional

hypothesis. However, the fractional long-run component may still be well-approximated

by a deterministic trend with trend breaks, particularly due to its smooth nature (Diebold

and Inoue; 2001; Sibbertsen; 2004). While such an approximation does not allow to draw

inference on the persistence of long-run shocks, it bears the advantage of providing a rough
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approximation to the business cycle via the simple model in spirit of Perron and Wada

(2009)

logGDPt = µ0 +

q∑
j=1

1(t > t∗j)µj(t− t∗j) + ct, a(L)ct = et (27)

where µ0, ..., µq are constants, 1(t > t∗j) is an indicator function that takes the value 1 if

t > t∗j , else zero, t∗j are the points in time after which trend breaks occur, t∗1 = 0 accounts

for an overall trend, ct is the cycle that is modelled as an AR(p) process, and et is white

noise.

The unknown terms in (27) are estimated in a two-step approach, where we first es-

timate µ0, ..., µq by regressing log GDP on the deterministic terms and next fit an AR

model to the residuals. The lag order for ct is chosen via the AIC. Since the break dates

t∗j , j = 2, ..., q are unknown, all
(
n−1
q−1

)
possible combinations of break dates are estimated

in an endogenous break date search, and the combination with the greatest log likelihood

is chosen. We consider q up to order 4, which requires to estimate
(

292
3

)
= 4, 106, 980

different specifications. A higher q is thus computationally infeasible, which immediately

illustrates the limitations of the approximation in (27). Estimation results for q = 2, 3, 4

are contained in table 3 in appendix A. Both AIC and the more conservative BIC clearly

suggest q = 4, which is the maximum number of trends considered. The estimated AR

coefficients are in line with the fractional UC results in table 1.

Figure 5 plots the trend-cycle decompostions from the fractional UC model and the

deterministic long-run specification in (27). As can be seen, the estimated long-run com-

ponents largely overlap, and the obtained measures for the business cycle are similar. Dif-

ferences occur in the 1960s, where the fractional UC model estimates a gradual recovery

from the 1960-1961 recession, while the model with structural breaks implies a rather steep

recovery directly after the recession, and before the Great Recession, where the fractional

model finds a stronger cyclical upswing. Both deviations are due to the estimated break

points t̂∗1 = 1963:3, t̂∗2 = 1966:1, and t̂∗3 = 2005:1, around which the linear approximation

becomes imprecise.

While the linear trend break model of Perron and Wada (2009) provides a rough ap-

proximation to GDP’s long-run component, its limitations directly become apparent from

figure 5. While for a closer approximation further break points are required, the maximum

number of break points is limited to three, as e.g. four breaks would require to estimate(
292
4

)
= 296, 729, 305 different combinations of break points, which is computationally in-

feasible. Consequently, approximating the long-run component via a deterministic process

with trend breaks as in (27) gives a rough idea of the business cycle but should only be
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Figure 5: Trend-cycle decompositions from the fractional UC model (gray, solid) and
the model with deterministic long-run components and structural breaks in (27) (black,
dashed). Parameter estimates are reported in table 1 and table 3. Estimated break points
are t̂∗1 = 1963:3, t̂∗2 = 1966:1, and t̂∗3 = 2005:1. Shaded areas correspond to NBER recession
periods.

considered as a first step in empirical research, while for a more precise measure one should

clearly favor the fractional UC model.

A brief summary of the above results and their implications concludes this section.

First, since the fractional UC model encompasses state-of-the-art integer-integrated UC

models with stochastic long-run components and autoregressive cycles (for instance Har-

vey; 1985; Clark; 1987; Balke and Wohar; 2002; Morley et al.; 2003; Kamber et al.; 2018),

and since the confidence interval for d does not contain the points d = 1 and d = 2,

integer-integrated UC models are likely misspecified for log US real GDP. Second, a deter-

ministic long-run specification as suggested by Perron and Wada (2009) serves as a good

approximation to GDP’s long-run component but is limited by the maximum number of

trend breaks that are computationally feasible. In addition, no evidence for the presence

of structural breaks is found one fractional integration is taken into account. Third, the

solution to the unobserved components puzzle for log US real GDP lies in the presence of

a yet neglected fractionally integrated long-run component that upward-biases the long-

run shock variance of the correlated UC model of Morley et al. (2003), violates the white

noise hypothesis for the model of Kamber et al. (2018), and is well approximated by a

deterministic trend with structural breaks by Perron and Wada (2009). Once the frac-

tional long-run component is taken into account, the resulting trend-cycle decomposition

is well in line with the NBER chronology, no remaining autocorrelation in the estimated
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long- and short-run shocks is found, and the estimated integration order confirms the non-

parametric estimates in section 2. And fourth, the violation of the I(1) assumption for log

US real GDP has implications beyond the UC literature. Contrary to the predominant

interpretation that long-run shocks have only a contemporaneous impact on GDP growth

they should be rather interpreted as having a gradually decreasing effect over time. In

addition, the results call into question several models where GDP is treated as an I(1)

process.

6 Conclusion

To examine whether the puzzling results in the unobserved components literature were

driven by the presence of a latent, fractionally integrated long-run component in log US

real GDP, we generalized unobserved components models to the fractionally integrated

processes. For the estimation of the model parameters we derived a quasi maximum like-

lihood estimator that was shown to be consistent and asymptotically normal. Estimators

for the latent components that are identical to the Kalman filter and smoother but com-

putationally superior for fractional models were derived.

For log US real GDP, we obtained an estimated integration order of around 1.3, imply-

ing that long-run shocks have a gradually decreasing impact on GDP growth over time.

The resulting trend-cycle decomposition is well in line with the NBER chronology and

explains the contradicting results of Morley et al. (2003), Perron and Wada (2009), and

Kamber et al. (2018) well.

The model offers a variety of opportunities for future research. It may be generalized

to the multivariate case, where fractional trends of different persistence with correlated

innovations are allowed. A multivariate fractional trend-cycle model would then allow

to estimate common fractional trends of cointegrated variables and test for polynomial

cointegration. Furthermore, inferential methods that test for the number of common trends

or the equality of integration orders could be established. As shown in Diebold and Inoue

(2001), fractionally integrated processes and structural breaks are related, since the former

class of processes can produce level shifts and since structural breaks can be misinterpreted

as I(d) processes. Hence, combining both concepts, e.g. in a fractional UC model with

regime switching, can be a fruitful challenge for future research.

To applied researchers, the model offers a flexible data-driven method to treat perma-

nent and transitory components in macroeconomic and financial applications. It provides a

solution for many issues of model specification that caused uncertainty and debates about

realistic trend-cycle decompositions and estimation of recessions. Based on that, also the

interaction of trends and cycles can be analyzed.
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A Graphs and tables

estimate std. error

d̂ 1.3528 0.0689
σ̂2
η 0.0753 0.0469
σ̂2
ηε -0.0710 0.0234
σ̂2
ε 0.7959 0.0188

φ̂1 0.8727 0.0368

lt(θ̂) -370.7755
̂Corr(ηt, εt) -0.2899

Table 2: Robustness check: Estimation results for the fractional UC model in (2), (3), (5),
and (6) for log US real GDP via the QML estimator (17) for p = 1 with a trend break
after 1973:1, as suggested by Perron and Wada (2009).

q = 2 q = 3 q = 4
estimate std. error estimate std. error estimate std. error

µ̂0 765.6046 0.4897 759.3243 0.5039 761.5529 0.5735
µ̂1 0.8543 0.0036 0.9811 0.0077 0.8974 0.0141
µ̂2 -0.3962 0.0147 -0.2013 0.0105 0.7404 0.0758
µ̂3 -0.3554 0.0152 -0.8635 0.0670
µ̂4 -0.3517 0.0141
â1 1.2720 0.0593 1.2191 0.0584 1.1958 0.0583
â2 -0.1528 0.0948 -0.1480 0.0927 -0.1348 0.0916
â3 -0.2533 0.0948 -0.1721 0.0583 -0.1829 0.0582
â4 0.0873 0.0589

AIC 729.6638 721.8059 715.6252
BIC 755.4250 747.5671 745.0665
t̂∗1 2000:3 1969:2 1963:3
t̂∗2 2004:4 1966:1
t̂∗3 2005:1

Table 3: Estimation results for the approximate model with a purely deterministic long-run
component and structural breaks in (27).
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Figure 6: Robustness check: Additional lags and autocorrelation. The upper left plot
sketches the estimated cyclical components for the fractional UC models with p = 1 (grey,
solid) and p = 4 (black, dashed). The upper-right plot displays the estimated autocorrela-
tions of the prediction errors for p = 1, together with a 95% confidence interval, while the
lower-left plot sketches the estimated autocorrelations for ηt|n from the Kalman smoother
and the lower-right plot for εt|n.
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B Further applications

While decomposing log US real GDP into trend and cycle as considered in section 5 is the

key application of UC models, the literature has also considered the decomposition of other

macroeconomic aggregates, including industrial production (Clark; 1987; Weber; 2011),

investment (Harvey and Trimbur; 2003), consumption (Morley; 2007), and employment

(Koopman et al.; 2012; Klinger and Weber; 2016). In this appendix, we illustrate the

fractional trend-cycle decomposition for the three additional variables. This allows to

draw inference on the persistence of long-run shocks and to test the hypotheses about d

in the UC literature for the three variables of interest. Furthermore, we shed light on the

cyclical dynamics and the economic plausibility of the resulting decomposition.

Our data consists of log US industrial production index (mnemonic: INDPRO), log US

real gross private domestic investment (mnemonic: GPDIC1), log real personal consump-

tion expenditures (mnemonic: PCECC96), and log total nonfarm employees (mnemonic:

PAYEMS) and was downloaded from the St. Louis FED. It is in quarterly frequency, spans

from 1947:1 to 2020:1, and is seasonally adjusted. Deterministic terms have been elimi-

nated from the data via (26), estimation of the model parameters θ was carried out as in

section 5, and the lag order of the cyclical polynomial p was chosen via the AIC.

Ind. Production Investment Consumption Employees
estimate std. err. estimate std. err. estimate std. err. estimate std. err.

d̂ 1.3799 0.1273 1.3208 0.0749 0.8791 0.0654 1.2392 0.0231
σ̂2
η 0.3014 0.3125 0.3785 0.4373 4.2553 1.5741 2.4026 0.1350

σ̂ηε -0.9448 0.8044 -1.6685 1.4466 -5.5326 1.8024 -2.5074 0.1598
σ̂2
ε 3.9189 1.3516 23.8628 3.2176 7.3518 2.0192 2.7522 0.2472

φ̂1 0.9892 0.0785 0.8036 0.0454 1.0086 0.0245 1.9843 0.0453

φ̂2 -0.2134 0.0696 0.0797 0.0309 -1.4436 0.0674

φ̂3 0.0921 0.0331 -0.1600 0.0407 0.6302 0.0414

φ̂4 -0.0701 0.0274 -0.2299 0.0125

φ̂5 -0.0968 0.0147

φ̂6 0.2051 0.0061

φ̂7 -0.0802 0.0041

lt(θ̂) -539.3758 -854.5616 -331.5174 -120.9329
AIC 1082.2300 1665.7794 667.5800 263.9920
BIC 1111.6714 1684.1803 693.3412 304.4739
ρ̂ -0.8694 -0.5519 -0.9891 -0.9751

Table 4: Estimation results for the fractional UC model in (2), (3), (5), and (6) for log
US industrial production, log US real gross private domestic investment, log real personal
consumption expenditures, and log all employees (total, nonfarm) via the QML estimator

(17). p was chosen via the AIC. ρ̂ = ̂Corr(ηt, εt).
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Figure 7: Trend-cycle decomposition for log US industrial production, log US real gross
private domestic investment, log real personal consumption expenditures, and log all em-
ployees (total, nonfarm) with correlated innovations. The left plots sketch the trend com-
ponent estimates τt|n from the fractional UC model in black, dashed, together with the
observable time series in gray, solid. The plots on the right-hand side show the estimated
cyclical components ct|n Estimates were carried out via the single-step Kalman smoother
as discussed in section 4.1, while parameter estimates are reported in table 4. Shaded
areas correspond to NBER recession periods.

Estimation results are contained in table 4. While for industrial production, private

investment and total employees a 95% confidence interval for d does not contain the

random walk case with d = 1, the 95% confidence interval for private consumption is
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[0.7509, 1.0074], so that d = 1 lies on the boarder of the interval. Consequently, integer-

integrated UC models are likely to be misspecified for the former three series, while for

consumption we cannot show a violation of the I(1) hypothesis on a 95% level of signifi-

cance.

Figure 7 plots the three trend-cycle decompositions for the variables of interest and

illustrates that all decompositions are well in line with the NBER chronology. For industrial

production we obtain a decomposition hitting NBER recession periods, while I(1) UC

models frequently produce implausible cycles for industrial production that increase during

recessions, particularly when p is chosen to be small (Weber; 2011). The decomposition for

private investment finds a smooth trend component together with strong cyclical variation,

which especially becomes apparent during the Great Recession, where a strong cyclical

upswing before the recession is followed by a pronounced slump of the cycle. Private

consumption is found to exhibit less persistent long-run shocks compared to the other

series, together with a strong cyclical component. Finally, long- and short-run shocks

to total employees exhibit similar estimates for their variances. While the model finds a

reduction of long-run growth from the 21st century on, it attributes job creation before

the dotcom bust and the Great Recession to the transitory component.
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C Mathematical appendix

C.1 Univariate moving average representation of aggregated model

We consider the aggregation of two moving average (MA) processes in the lag operator Ld

with generic lag polynomials h(Ld) and h̃(Ld) of order q and q̃, respectively,

zt = h(Ld)ηt + h̃(Ld)εt, (28)

with the white noise processes(
ηt

εt

)
∼ i.i.d.(0, Q), Q =

[
σ2
η σηε

σηε σ2
ε

]
.

In what follows, set p = max(q, q̃) and let hi = 0 for all i > q, h̃i = 0 for all i > q̃. We first

derive the MA representation in the standard lag operator L = L1. Next we derive the

MA representation in the fractional lag operator Ld which is in general not of finite order.

To rewrite (28) in the conventional lag operator L define

Lkd = (1−∆d)k =
∞∑
i=k

ςk,i(d)Li,

insert it into (28), and rearrange terms

zt = ηt + εt +

p∑
k=1

(
hk

∞∑
i=k

ςk,i(d)ηt−i + h̃k

∞∑
i=k

ςk,i(d)εt−i

)

= ηt + εt +

p∑
k=1

∞∑
i=k

ςk,i(d)
(
hkηt−i + h̃kεt−i

)
.

Redefining the sum indexes we obtain

zt = ηt + εt +
∞∑
l=1

ηt−l

l∑
k=1

ςk,l(d)hk +
∞∑
l=1

εt−l

l∑
k=1

ςk,l(d)h̃k (29)

=
∞∑
l=0

gl ηt−l +
∞∑
l=0

g̃l εt−l, (30)

with g0 = g̃0 = 1 and gl =
∑l

k=1 ςk,l(d)hk and g̃l =
∑l

k=1 ςk,l(d)h̃k, l = 1, 2, . . . ,∞. Note

that both moving average processes are of order∞. If (30) can be aggregated, there exists
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a univariate moving average process

zt = c(L)ut, ut ∼ i.i.d.(0, σ2
u).

To compute the coefficients ci, note that Cov(zt, clut−l) = Cov(zt, glηt−l + g̃lεt−l), which

gives

c2
l σ

2
u = g2

l σ
2
η + g̃2

l σ
2
ε + 2glg̃lσηε, l = 0, 1, . . . . (31)

To make the dependence of c2
l on the parameters of the fractional moving average polyno-

mials explicit insert gl and g̃l into (31). This delivers for l ≥ 1

c2
l σ

2
u =

(
l∑

k=1

ςk,l(d)hk

)2

σ2
η +

(
l∑

k=1

ςk,l(d)h̃k

)2

σ2
ε + 2

(
l∑

k=1

ςk,l(d)hk

)(
l∑

k=1

ςk,l(d)h̃k

)
σηε

=
l∑

k=1

l∑
i=1

ςk,l(d)ςi,l(d)
(
hkhiσ

2
η + h̃kh̃iσ

2
ε + 2σηεhkh̃i

)
, (32)

with c0 = 1, σ2
u = σ2

η + σ2
ε + 2σηε. Solving for cl yields the MA coefficients for ut.

Next we derive the univariate moving average representation in the fractional lag operator

which is typically of infinite order

zt = ψ(Ld)ut. (33)

If (33) exists, then it can be rewritten similarly to (29) in the standard lag operator as

zt = ut +
∞∑
l=1

ut−l

(
l∑

k=1

ςk,l(d)ψk

)
.

For such a representation to exist, there must exist parameters ψi, i = 1, . . . , qu such that

cl =
l∑

k=1

ςk,l(d)ψk, l = 1, 2, . . . ,

while (31) holds. Solving for ψl delivers

ψl =
cl −

∑l−1
k=1 ςk,l(d)ψk
ςl,l(d)

. (34)

Obviously, the order of the moving average polynomial in the fractional lag operator would
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only be of finite order qu if

cl =
l−1∑
k=1

ςk,l(d)ψk, l > qu. (35)

In general this is not the case. In order to represent the ψl, l = 1, ..., qu, in terms of the

parameters hj, j = 1, ..., q, and h̃k, k = 1, ..., q̃, of the moving average polynomials in Ld,

one inserts (32) into (34) and obtains

ψl =

√∑l
k=1

∑l
i=1 ςk,l(d)ςi,l(d)

(
hkhiσ2

η + h̃kh̃iσ2
ε + 2σηεhkh̃i

)
/σu −

∑l−1
k=1 ςk,l(d)ψk

ςl,l(d)
. (36)

Since only ψ1, ..., ψl−1 enter (36), ψl can be calculated recursively, where the first coefficient

is ψ1 = σ−1
u

√
h2

1σ
2
η + h̃2

1σ
2
ε + 2h1h̃1σηε and σu =

√
σ2
η + σ2

ε + 2σηε.

A special case occurs when one of the two MA processes in (28) is purely white noise,

e.g. h̃(Ld) = 1. Then the square root in (36) becomes
√∑l

k,i=1 ςk,l(d)ςi,l(d)hkhiσ2
η =√(∑l

k=1 ςk,l(d)hkση

)2

=
∑l

k=1 ςk,l(d)hkση, and the recursion in (36) yields ψl = hl(ση/σu).
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C.2 Asymptotic properties of the maximum likelihood estimator

Proof of theorem 4.1. To prove consistency of the quasi maximum likelihood (QML) esti-

mator for θ = (d, φ1, ..., φp, σ
2
η, σηε, σ

2
ε) of model (2), (3), (5), and (6) as given in (25)

θ̂ = arg max
θ∈Θ

1

n

n∑
t=1

lt(θ), lt(θ) = −1

2
log σ2

u −
1

2σ2
u

u2
t (θ),

we proceed as follows. For the parameter space of d ∈ D = [dmin, dmax] we denote D∗(κ) =

D ∩ {d : d0 − d ≤ 1/2− κ}, 0 < κ < 1/2 as the region where ut(θ) is stationary. In a first

step, we show that our model is nested in the class of ARFIMA processes considered by

Nielsen (2015), for which it is proven that given any constant K > 0, there exists a fixed

κ̄ > 0, such that

Pr

(
inf

d∈D\D∗(κ̄)∩θ∈Θ

1

n

n∑
t=1

u2
t (θ) > K

)
→ 1 as n→∞, (37)

which implies Pr(d̂ ∈ D∗(κ̄)∩ θ ∈ Θ)→ 1 as n→∞. Thus, the relevant parameter space

asymptotically reduces to the stationary region Θ∗(κ̄) = {θ|θ ∈ Θ, d ∈ D∗(κ̄)}.
From the results of Nielsen (2015, eq. 8) it then follows that within the stationary

region the sum of squared residuals satisfies a weak law of large numbers (WLLN), while

it diverges in probability for d0 − d ≥ 1/2

plimn→∞
1

n

n∑
t=1

u2
t (θ) =

E(ũ2
t (θ)) if d0 − d < 1/2,

∞ otherwise,
(38)

where ũt(θ) = ψ̃(L)−1φ̃(L)∆dyt is the untruncated residual generated by the untruncated

polynomials φ̃(L) = 1 −
∑∞

j=1 φ̃jL
j = 1 −

∑p
j=1 φjL

j
d, ∆d =

∑∞
j=0 πj(d)Lj, and ψ̃(L) =

1 +
∑∞

j=1 ψ̃jL
j with coefficients as defined in (21) and (40).

The second and more delicate step is then to show that the objective function satisfies

a uniform weak law of large numbers (UWLLN), i.e. there exists a function ct(θ) ≥ 0 such

that for all θ1, θ2 ∈ Θ∗(κ) it holds that |lt(θ1)− lt(θ2)| ≤ ct(θ)||θ1 − θ2||, and ct(θ) satisfies

a WLLN (Wooldridge; 1994, th. 4.2). Since lt(θ) is continuously differentiable, a natural

choice for ct(θ) that satisfies the above inequality is the supremum of the gradient, which

follows from the mean value expansion of lt(θ) about θ (Wooldridge; 1994, eq. 4.4). Thus,

it remains to be shown that the supremum of the gradient satisfies a WLLN, i.e.

sup
θ∈Θ∗(κ)

∣∣∣ 1
n

n∑
t=1

∂

∂θ
lt(θ)

∣∣∣ = Op(1), (39)
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for any fixed κ ∈ (0, 1/2). From (39) the UWLLN for the objective function follows,

see Newey (1991, cor. 2.2) and Wooldridge (1994, th. 4.2). Since the model is identi-

fied, as shown in section 4.2, consistency of the QML estimator then follows directly, see

Wooldridge (1994, th. 4.3).

Conditions (37) and (38) were shown to hold by Nielsen (2015, eq. 8 and 13) for a

general class of ARFIMA processes where the disturbances are conditionally homoskedastic

martingale difference sequences with finite moments up to order four, the parameter space

is convex and compact, the AR and MA polynomials are stationary and invertible, and

the model is identified. Since the class of ARFIMA processes considered there nests the

fractional UC model, it follows directly that (37) and (38) are satisfied for our model.

Nonetheless, consistency of the QML estimator does not follow directly from the proofs

of Nielsen (2015), since first, a different estimator is considered there, and second, our

model imposes restrictions on the parameters of the model considered by Nielsen (2015).

Consequently, (39) needs to be shown to hold for consistency.

To verify (39) a convenient representation of the MA polynomial ψ(Ld) = ψ̃(L) = 1 +∑∞
j=1 ψ̃jL

j in the standard lag operator L, that links the coefficients ψ̃j to the parameters in

θ, is required. For the AR polynomial φ(Ld) a representation in the standard lag operator

L is already given in (21). For the MA polynomial it follows from (18) that φ̃(L)ηt + (1−
Ld)εt = (1 −

∑∞
l=1 φ̃lL

l)ηt +
∑∞

l=0 πl(d)Llεt = (1 +
∑∞

l=1 ψlL
l
d)ut = (1 +

∑∞
l=1 ψ̃lL

l)ut, so

that by matching the autocovariance functions of the white noise processes φ̃(L)ηt + ∆dεt

and ψ̃(L)ut one obtains

ψ̃(L) = 1 +
∞∑
l=1

ψ̃lL
l, ψ̃l =

1

σu

√
φ̃2
l σ

2
η + π2

l (d)σ2
ε − 2φ̃lπl(d)σηε, (40)

for all l > 0, and σ2
u = σ2

η + σ2
ε + 2σηε.

Using (21) and (40), the objective function in (25) can be written as

lt(θ) = −1

2
log σ2

u −
1

2σ2
u

(
ψ̃+(L)−1φ̃+(L)∆d

+yt

)2

, (41)

from which the partial derivatives are of interest to verify (39).

As will become clear, the crucial part in establishing (39) is to show that

sup
θ∈Θ∗(κ)

1

n

n∑
t=1

ut(θ)
∂ut(θ)

∂θi
= Op(1),

where θi is the i-th entry in θ. Here, it will be helpful to note that for a white noise process

ut, MA weights
∑∞

j=0 |mi,j(θ)| < ∞, i = 1, 2, and the set Θ̃ = {θ|θ ∈ Θ, d − d0 > −1/2},
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the product moments satisfy

sup
θ∈Θ̃

∣∣∣∣∣n−1

n∑
t=1

[
∂k∆d−d0

+

∂dk

∞∑
j=0

m1,j(θ)ut−j

][
∂l∆d−d0

+

∂dl

∞∑
j=0

m2,j(θ)ut−j

]∣∣∣∣∣ = Op(1), (42)

for k, l ≥ 0 as shown in Nielsen (2015, lemma B.3). Since ut(θ) as defined in (23) satis-

fies the absolute summability condition of its coefficients for (42) when θ ∈ Θ∗(κ) since

ψ̃+(L)−1, φ̃+(L) are stable, it remains to be shown that absolute summability holds for

the partial derivatives.

Starting with the partial derivatives w.r.t. the variance parameters, one has

∂lt(θ)

∂σ2
i

= − 1

2σ2
u

+
1

2σ4
u

u2
t (θ) +

1

σ2
u

ut(θ)ψ̃+(L)−2∂ψ̃+(L)

∂σ2
i

φ̃+(L)∆d
+yt

= − 1

2σ2
u

+
1

2σ4
u

u2
t (θ) +

1

σ2
u

ut(θ)ψ̃+(L)−1∂ψ̃+(L)

∂σ2
i

ut(θ), (43)

∂lt(θ)

∂σηε
= − 1

σ2
u

+
1

σ4
u

u2
t (θ) +

1

σ2
u

ut(θ)ψ̃+(L)−1∂ψ̃+(L)

∂σηε
ut(θ), (44)

where i = η, ε, and u2
t (θ) = Op(1) for θ ∈ Θ∗(κ) due to the stationary nature of

ut(θ). For (43) and (44) to satisfy (42) it is sufficient to show that the coefficients in

∂ψ̃(L)/∂θi =
∑∞

j=1(∂ψ̃jL
j)/∂θi are absolutely summable for all θi = σ2

η, σ
2
ε , σηε, since the

absolute infinite sum of partial derivatives dominates the absolute finite sum of partial

derivatives of the truncated polynomial ψ̃+(L). The partial derivatives of the MA coeffi-

cients ψ̃j, j = 1, ...,∞, in (40) are

∂ψ̃j
∂σ2

η

=
−1

2σ3
u

√
φ̃2
jσ

2
η + π2

j (d)σ2
ε − 2φ̃jπj(d)σηε +

φ̃2
j

2σu

(
φ̃2
jσ

2
η + π2

j (d)σ2
ε − 2φ̃jπj(d)σηε

)−1/2

= − ψ̃j
2σ2

u

+
φ̃2
j

2ψ̃jσ2
u

, (45)

∂ψ̃j
∂σ2

ε

=
−1

2σ3
u

√
φ̃2
jσ

2
η + π2

j (d)σ2
ε − 2φ̃jπj(d)σηε +

π2
j (d)

2σu

(
φ̃2
jσ

2
η + π2

j (d)σ2
ε − 2φ̃jπj(d)σηε

)−1/2

= − ψ̃j
2σ2

u

+
π2
j (d)

2ψ̃jσ2
u

, (46)

∂ψ̃j
∂σηε

=
−1

σ3
u

√
φ̃2
jσ

2
η + π2

j (d)σ2
ε − 2φ̃jπj(d)σηε −

φ̃jπj(d)

σu

(
φ̃2
jσ

2
η + π2

j (d)σ2
ε − 2φ̃jπj(d)σηε

)−1/2

= − ψ̃j
σ2
u

− φ̃jπj(d)

ψ̃jσ2
u

. (47)
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This yields the partial sums

∂ψ̃(L)

∂σ2
η

=
1

2σ2
u

∞∑
j=1

(
−ψ̃j +

φ̃2
j

ψ̃j

)
Lj =

1

2σ2
u

[
−ψ̃(L) + 1 +

∞∑
j=1

φ̃2
j

ψ̃j
Lj

]
,

∂ψ̃(L)

∂σ2
ε

=
1

2σ2
u

∞∑
j=1

(
−ψ̃j +

π2
j (d)

ψ̃j

)
Lj =

1

2σ2
u

[
−ψ̃(L) + 1 +

∞∑
j=1

π2
j (d)

ψ̃j
Lj

]
,

∂ψ̃(L)

∂σηε
=

1

σ2
u

∞∑
j=1

(
−ψ̃j −

φ̃jπj(d)

ψ̃j

)
Lj =

1

σ2
u

[
−ψ̃(L) + 1−

∞∑
j=1

φ̃jπj(d)

ψ̃j
Lj

]
,

so that (43) and (44) are

∂lt(θ)

∂σ2
η

= − 1

2σ2
u

+
1

2σ4
u

ut(θ)ψ̃+(L)−1

(
1 +

∞∑
j=1

φ̃2
j

ψ̃j
Lj

)
+

ut(θ), (48)

∂lt(θ)

∂σ2
ε

= − 1

2σ2
u

+
1

2σ4
u

ut(θ)ψ̃+(L)−1

(
1 +

∞∑
j=1

π2
j (d)

ψ̃j
Lj

)
+

ut(θ), (49)

∂lt(θ)

∂σηε
= − 1

σ2
u

+
1

σ4
u

ut(θ)ψ̃+(L)−1

(
1−

∞∑
j=1

φ̃jπj(d)

ψ̃j
Lj

)
+

ut(θ). (50)

Since ψ̃+(L)−1 is a stable polynomial, for (48), (49), and (50) to satisfy (42) it is sufficient to

show that the coefficients in parentheses are summable in absolute value. Since the absolute

sum of truncated coefficients is bounded by the absolute sum of untruncated coefficients,

we only prove the latter term to be finite. Here it will be useful to note that πj(d) ∼
j−d−1/Γ(−d) as j → ∞ (Hassler; 2018, eq. 5.25), so that πj(d) = O(j−d−1) and φ̃j =

O(j−d−1) which can be seen from (21) since
∑p

k=j φk
(
k
j

)
= O(1) for all finite p and the finite

sum
∑p

l=1 πj(dl) is asymptotically dominated by πj(d) = O(j−d−1). Finally, ψ̃−1
j = O(jd+1)

which follows directly from plugging the above results into the inverse of ψ̃j in (40). This

implies that the untruncated polynomials
(

1 +
∑∞

j=1 φ̃
2
j/ψ̃jL

j
)

,
(

1 +
∑∞

j=1 π
2
j (d)/ψ̃jL

j
)

,(
1−

∑∞
j=1 φ̃jπj(d)/ψ̃jL

j
)

are absolutely summable, as 1 +
∑∞

j=1O(j−d−1) < ∞. Conse-

quently, the coefficients of the three polynomials in parentheses in (48), (49), and (50) are

absolutely summable, and thus the partial derivatives of ut(θ) satisfy the absolute summa-

bility condition for (42) when θ ∈ Θ∗(κ). From this it follows directly that (42) holds for

the partial derivatives in (48), (49), and (50). Hence, a WLLN follows

sup
θ∈Θ∗(κ)

∣∣∣ 1
n

n∑
t=1

∂

∂θi
lt(θ)

∣∣∣ = Op(1), θi = σ2
η, σ

2
ε , σηε. (51)

Next, we consider the partial derivatives of the objective function (41) w.r.t. the AR
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coefficients φ1, ..., φp. Since φ̃+(L) = φ+(Ld) =
(

1−
∑p

j=1 φjL
j
d

)
+

, the partial derivative

w.r.t. φj is

∂lt(θ)

∂φj
=

1

σ2
u

ut(θ)

[
ψ̃+(L)−1Ljd+∆d

+yt + φ+(Ld)ψ̃+(L)−2∂ψ̃+(L)

∂φj
∆d

+yt

]
. (52)

The first term ψ̃+(L)−1Ljd+∆d
+yt satisfies absolute summability as required for (42) when

θ ∈ Θ∗(κ), since ψ̃+(L)−1 is the inverse of a stable MA polynomial, Ljd does not affect

the memory of a process, and ∆d
+yt is stationary for d ∈ D∗(κ). For the derivative of

ψ̃+(L) in the second term it holds that the absolute sum of the coefficients in ∂ψ̃(L)/∂φj =∑∞
l=1(∂ψ̃l/∂φj)L

l is an upper bound for the absolute sum of the coefficients in ∂ψ̃+(L)/∂φj.

Showing
∑∞

l=1 |∂ψ̃l/∂φj| <∞ is thus sufficient for (42) to hold for the latter term in (52).

The partial derivatives of the coefficients ψ̃l, l = 1, ...,∞, in (40) are

∂ψ̃l
∂φj

=
1

σu

(
φ̃2
l σ

2
η + π2

l (d)σ2
ε − 2φ̃lπl(d)σηε

)−1/2 (
φ̃lσ

2
η − πl(d)σηε

) ∂φ̃l
∂φj

=
1

σ2
u

ψ̃−1
l

(
φ̃lσ

2
η − πl(d)σηε

) ∂φ̃l
∂φj

, (53)

where the derivative of φ̃l defined in (21) is

∂φ̃l
∂φj

=
∂

∂φj

p∑
i=1

(−1)iπl(di)

p∑
k=i

φk

(
k

i

)
=

j∑
i=1

(−1)iπl(di)

(
j

i

)
= bφj ,l, (54)

and bφj ,l = O(l−d−1) since the sum in (54) is dominated by πl(d) and j ≤ p is finite.

Plugging this result into (53) yields the partial derivative of ψ̃(L) that is given by the

polynomial

∂ψ̃(L)

∂φj
=
∞∑
l=1

aφj ,lL
l, aφj ,l =

1

σ2
u

ψ̃l
−1
(
φ̃lσ

2
η − πl(d)σηε

) j∑
i=1

(−1)iπl(di)

(
j

i

)
, (55)

where aφj ,l is O(l−d−1), since the finite sum
∑j

i=1(−1)iπl(di)
(
j
i

)
is asymptotically domi-

nated by πl(d) for all j ≤ p, and φ̃l = O(l−d−1), πl(d) = O(l−d−1), and ψ̃−1
l = O(ld+1) as

noted before. Thus, the coefficients of the partial derivatives of ψ̃(L) in (55) are absolutely

summable
∑∞

l=1 |aφj ,l| =
∑∞

l=1O(l−d−1) < ∞. As they are the upper bound for the abso-

lute sum of ∂ψ̃+(L)/∂φj, the coefficients of the latter are also absolutely summable. Since

φ+(Ld), ψ̃+(L)−2 in (52) are stable polynomials, and since ∆d
+yt is stationary for θ ∈ Θ∗(κ),

the second term φ+(Ld)ψ̃+(L)−2 ∂ψ̃+(L)
∂φj

∆d
+yt in (52) satisfies the absolute summability con-
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dition required for (42), so that (42) holds for (52). Consequently, a WLLN follows

sup
θ∈Θ∗(κ)

∣∣∣ 1
n

n∑
t=1

∂

∂φi
lt(θ)

∣∣∣ = Op(1), i = 1, ..., p. (56)

Finally, the partial derivative w.r.t. the integration order d is

∂lt(θ)

∂d
=
ut(θ)

σ2
u

[
ψ̃+(L)−1∂ψ̃+(L)

∂d
ut(θ)− ψ̃+(L)−1∂φ+(Ld)

∂d
∆d

+yt − ψ̃+(L)−1φ+(Ld)
∂∆d

+

∂d
yt

]
,

(57)

for which it has to be shown that (42) holds.

For θ ∈ Θ∗(κ), ψ̃+(L)−1φ+(Ld)
∂∆d

+

∂d
yt = ψ̃+(L)−1φ+(Ld)

∂∆
d−d0
+

∂d
∆d0

+ yt in (57) trivially

satisfies the conditions for (42) with k = 0, l = 1, as ∆d0
+ yt is a stationary moving average

process with white noise shocks ut, see (8), and ψ̃+(L)−1, φ+(Ld) are stable polynomials.

For the two remaining terms in (57) it will be helpful to note that the partial derivative

(∂∆d/∂d) =
∑∞

j=1(∂πj(d)/∂d)Lj, where an analytical expression for the derivative of πj(b)

given that b is negative was derived in Hartl et al. (2020). To meet this requirement,

we use πj(d) = πj(d − 1) − πj−1(d − 1) = −(d/j)πj−1(d − 1) (Hassler; 2018, eq. 5.22)

which, by iteration, yields πj(d) = πj−s(d − s)
∏s−1

k=0(k − d)/(j − k) for all j ≥ s. Now,

set s = dde, so that d − s ≤ 0. Then, from Hartl et al. (2020) ∂πj−s(d − s)/∂d =

πj−s(d− s)
∑j−s−1

k=0 (d− s− k)−1, j ≥ s, and

∂πj(d)

∂d
=

∂

∂d

(
πj−s(d− s)

s−1∏
k=0

k − d
j − k

)

= −πj−s(d− s)
s−1∑
l=0

1

j − l

s−1∏
k=0,k 6=l

k − d
j − k

+
∂πj−s(d− s)

∂d

s−1∏
k=0

k − d
j − k

= πj−s(d− s)
s−1∏
k=0

k − d
j − k

s−1∑
l=0

(d− l)−1 + πj−s(d− s)
s−1∏
k=0

k − d
j − k

j−s−1∑
l=0

(d− s− l)−1

= πj(d)
s−1∑
l=0

1

d− l
+ πj(d)

j−1∑
l=s

1

d− l
= πj(d)

j−1∑
k=0

(d− k)−1 = O(j−d−1(1 + log j)),

(58)

for all j ≥ s which results from the sum being bounded by the limit of an harmonic series

that is O(1 + log j), and πj(d) = O(j−d−1). The same result was derived in Johansen and

Nielsen (2010) and Nielsen (2015) using a different proof.

With a limit for the partial derivative of πj(d) as given in (58) at hand, we can derive the
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limits of the two remaining polynomials in (57). Starting with ∂φ+(Ld)/∂d = ∂φ̃+(L)/∂d,

of which the absolute sum of coefficients is bounded by the absolute sum of the untruncated

polynomial ∂φ̃(L)/∂d = −
∑∞

j=1(∂φ̃j/∂d)Lj, one has

∂φ̃j
∂d

=

p∑
l=1

(−1)l
∂πj(dl)

∂d

p∑
k=l

φk

(
k

l

)
=

p∑
l=1

(−1)lπj(dl)

(
j−1∑
k=0

l

dl − k

)
p∑
k=l

φk

(
k

l

)
= bd,j,

(59)

where, as noted before,
∑p

k=l φk
(
k
l

)
= O(1) since p is finite,

∑j−1
k=0

l
dl−k = O(1 + log j)

since l is bounded by p and the sum is bounded by the limit of a harmonic series that is

O(1 + log j), and the πj(dl) are bounded by πj(d) = O(j−d−1), so that the whole term in

(59) is bd,j = O(j−d−1(1 + log j)). Thus, ∂φ̃(L)/∂d =
∑∞

j=1O(j−d−1(1 + log j)), and since

log j is always dominated by any jb with b < 0, the coefficients of the partial derivative are

absolutely summable
∑∞

j=1O(j−d−1(1 + log j)) < ∞. The absolute sum of coefficients of

the untruncated polynomial is an upper bound for the truncated polynomial, and thus the

second term in parentheses in (57) satisfies the absolute summability condition for (42).

The third and final component in (57) to be studied is the partial derivative ∂ψ̃+(L)/∂d,

where again the absolute sum of the coefficients ∂ψ̃(L)/∂d =
∑∞

j=1(∂ψ̃j/∂d)Lj provides

an upper bound. Via (40) one has

∂ψ̃j
∂d

=
1

σ2
u

ψ̃−1
j

[(
φ̃jσ

2
η − πj(d)σηε

) ∂φ̃j
∂d

+
(
πj(d)σ2

ε − φ̃jσηε
) ∂πj(d)

∂d

]
= ad,j. (60)

As shown above, for θ ∈ Θ∗(κ), ψ̃−1
j = O(jd+1), φ̃j = O(j−d−1), πj(d) = O(j−d−1),

while ∂φ̃j/∂d = O(j−d−1(1 + log j)) as shown in (59) and below, as well as ∂πj(d)/∂d =

O(j−d−1(1 + log j)) as shown in (58). Consequently, partial derivative in (60) is ad,j =

O(j−d−1(1 + log j)), so that the coefficients of the partial derivative of ψ̃(L) are absolutely

summable
∑∞

j=1 |ad,j| =
∑∞

j=1 O(j−d−1(1+log j)) <∞. This implies absolute summability

of the coefficients in ∂ψ̃(L)+/∂d and thus the last term in (57) also satisfies the condition

for (42).

As we have shown, (42) holds for all terms in (57), so that a WLLN follows for the

partial derivative of the objective function w.r.t. d

sup
θ∈Θ∗(κ)

∣∣∣ 1
n

n∑
t=1

∂

∂d
lt(θ)

∣∣∣ = Op(1). (61)

As shown in (51), (56), and (61), all partial derivatives of the objective function satisfy

a WLLN, so that (39) holds. This generalizes the pointwise convergence of the objective
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function to weak convergence, implying that a UWLLN holds for the objective function.

Since the model is identified, consistency for the QML estimator follows directly θ̂
p−→ θ0

as n→∞, see Wooldridge (1994, th. 4.3).

Proof of theorem 4.2. As shown in theorem 4.1, the QML estimator θ̂ is consistent, so that

the asymptotic distribution can be obtained by applying a Taylor expansion of the score

function at θ0

0 =
1√
n

n∑
t=1

∂lt(θ)

∂θ

∣∣∣
θ=θ̂

=
1√
n

n∑
t=1

∂lt(θ)

∂θ

∣∣∣
θ=θ0

+
1√
n

n∑
t=1

∂2lt(θ)

∂θ∂θ′

∣∣∣
θ=θ̄

(θ̂ − θ0), (62)

where θ̄ satisfies |θ̄i − θ0,i| ≤ |θ̂i − θ0,i| for all i = 1, ..., p+ 4, and p+ 4 is the dimension of

θ. The normalized score at θ = θ0 is given by

1√
n

n∑
t=1

∂lt(θ)

∂θ

∣∣∣
θ=θ0

=
−1√
nσ2

u,0

n∑
t=1

{
ut
∂ut(θ)

∂θ

∣∣∣
θ=θ0

+
1

2

∂σ2
u

∂θ

(
1− u2

t

σ2
u,0

)}
= Sn + op(1),

with

Sn =
−1√
nσ2

u,0

n∑
t=1

{
ut
∂ũt(θ)

∂θ

∣∣∣
θ=θ0

+
1

2

∂σ2
u

∂θ

(
1− u2

t

σ2
u,0

)}
, (63)

where the second equality is shown to hold in Robinson (2006, pp. 135-136) and Nielsen

(2015, pp. 174-175), and ũt(θ) is the untruncated residual as defined in (38) and below.

Furthermore, define S
(i)
n as the i-th entry of Sn that holds the partial derivative w.r.t. θi.

To establish asymptotic normality of the QML estimator, we first show that a central

limit theorem holds for the score function at θ0. Next, we prove that a UWLLN holds

for the Hessian matrix by showing that the Hessian matrix and its first partial derivatives

satisfy a WLLN (Wooldridge; 1994, th. 4.2). This allows to evaluate the Hessian matrix

in (62) at θ0. Then it follows that the QML estimator θ̂ is asymptotically normally dis-

tributed, and the asymptotic variance follows from the inverse Fisher information matrix.

Following Nielsen (2015, p. 175) a central limit theorem for the score function is ob-

tained by using the Cramér-Wold device. Thus, it has to be shown that for any p + 4-

vector µ, it holds that µ′Sn =
∑p+4

i=1 µiS
(i)
n

d−→ N(0, µ′Ω0µ). Now, given the σ-field

F̃t = σ({us, s ≤ t}) generated by the white noise process ut and its lags, it is easy to

see that in (63), ut
∂ũt(θ)
∂θ

∣∣
θ=θ0

adapted to F̃t is a stationary martingale difference sequence

(MDS) since ut is white noise, the partial derivatives are F̃t−1-measurable, and the coeffi-

cients of the partial derivatives are absolutely summable, as shown in the proof of theorem
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4.1. In addition, the second term in (63), 1
2
∂σ2

u/∂θ
(
1− u2

t/σ
2
u,0

)
is a stationary MDS, as

E(u2
t ) = σ2

0. Since we assume finite third and fourth moments, νt as given in

νt =

p+4∑
i=1

(ν1,i,t + ν2,i,t), ν1,i,t =
µi
σ2
u,0

ut
∂ũt(θ)

∂θi

∣∣∣
θ=θ0

, ν2,i,t =
µi

2σ2
u,0

∂σ2
u

∂θi

(
1− u2

t

σ2
u,0

)
,

adapted to F̃t is a stationary MDS, and µ′Sn = −n−1/2
∑n

t=1 νt.

As in Nielsen (2015, p. 175), the sum of conditional variances for µ′Sn with Sn as given

in (63) is then

1

n

n∑
t=1

E(ν2
t |F̃t−1) =

1

n

n∑
t=1

p+4∑
i,j=1

E
[
ν1,i,tν1,j,t + ν1,i,tν2,j,t + ν2,i,tν1,j,t + ν2,i,tν2,j,t|F̃t−1

]
. (64)

Since E[u2
t |F̃ ] = σ2

u,0, E[ut
(
1− u2

t/σ
2
u,0

)
|F̃t−1] = −γu,0σu,0 where γu,0 is the skewness of

ut that is finite by assumption, and since E[
(
1− u2

t/σ
2
u,0

)2 |F̃t−1] = E[u4
t/σ

4
u,0|F̃t−1] − 1 =

κu,0 − 1 where κu,0 is the kurtosis of ut that is finite by assumption, we have

E
[
ν1,i,tν1,j,t|F̃t−1

]
=
µiµj
σ2
u,0

∂ũt(θ)

∂θi

∣∣∣
θ=θ0

∂ũt(θ)

∂θj

∣∣∣
θ=θ0

, (65)

E
[
ν2,i,tν2,j,t|F̃t−1

]
=
µiµj
4σ4

u,0

∂σ2
u

∂θi

∂σ2
u

∂θj
(κu,0 − 1), (66)

E
[
ν1,i,tν2,j,t|F̃t−1

]
= − µiµj

2σ3
u,0

∂ũt(θ)

∂θi

∣∣∣
θ=θ0

∂σ2
u

∂θj
γu,0. (67)

Note that in (67) E
{

E
[
ν1,i,tν2,j,t|F̃t−1

]}
= 0 since E[∂ũt(θ)/θi|θ=θ0 ] = 0 for all i = 1, ..., p+

4 and all other terms are purely deterministic. Furthermore (66) is purely deterministic,

since the partial derivatives are zero if θi /∈ {σ2
η, σηε, σ

2
ε}, equal to one if θi ∈ {σ2

η, σ
2
ε}, and

equal to two if θi = σηε. Thus, from the law of large numbers for stationary and ergodic

processes, it follows that

1

n

n∑
t=1

E(ν2
t |F̃t−1)

p−→
p+4∑
i,j=1

E
{

E
[
ν1,i,tν1,j,t + ν2,i,tν2,j,t|F̃t−1

]}
=

p+4∑
i,j=1

µiµj
σ2
u,0

{
E

[
∂ũt(θ)

∂θi

∣∣∣
θ=θ0

∂ũt(θ)

∂θj

∣∣∣
θ=θ0

]
+
∂σ2

u

∂θi

∂σ2
u

∂θj

κu,0 − 1

4σ2
u,0

}
. (68)

To obtain an expression for the expected values in (68), we evaluate the partial deriva-

tives of ũt(θ) at θ = θ0, where we use that (∂/∂d)∆d
∣∣
θ=θ0

= (∂/∂d)∆d−d0
∣∣
θ=θ0

∆d0 =

∆d0
∑∞

l=1 l
−1Ll, see Hartl et al. (2020). The partial derivatives for ũt(θ) then follow directly
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from the proof of theorem 4.1 and are summarized in the following, where an expression

for ad,l,0 is given in (60), for bd,l,0 in (59), and for aφj ,l,0 in (55), and all coefficients are

evaluated at θ = θ0, which we denote with a zero in the subscript. Hence

∂ũt(θ)

∂d

∣∣∣
θ=θ0

=

(
∞∑
l=1

l−1Ll − ψ̃0(L)−1

∞∑
l=1

ad,l,0L
l − φ̃0(L)−1

∞∑
l=1

bd,l,0L
l

)
ut = md,0(L)ut,

∂ũt(θ)

∂φj

∣∣∣
θ=θ0

= −

(
φ̃0(L)−1(1−∆d0)j + ψ̃0(L)−1

∞∑
l=1

aφj ,l,0L
l

)
ut = mφj ,0(L)ut,

∂ũt(θ)

∂σ2
η

∣∣∣
θ=θ0

=
ψ̃0(L)−1

2σ2
u,0

∞∑
l=1

(
ψ̃l,0 −

φ̃2
l,0

ψ̃l,0

)
Llut = mσ2

η ,0
(L)ut,

∂ũt(θ)

∂σηε

∣∣∣
θ=θ0

=
ψ̃0(L)−1

σ2
u,0

∞∑
l=1

(
ψ̃l,0 +

φ̃l,0πl(d0)

ψ̃l,0

)
Llut = mσηε,0(L)ut,

∂ũt(θ)

∂σ2
ε

∣∣∣
θ=θ0

=
ψ̃0(L)−1

2σ2
u,0

∞∑
l=1

(
ψ̃l,0 −

π2
l (d0)

ψ̃l,0

)
Llut = mσ2

ε ,0
(L)ut.

Thus, for the expected value in (68)

E

[
∂ũt(θ)

∂θi

∣∣∣
θ=θ0

∂ũt(θ)

∂θj

∣∣∣
θ=θ0

]
= σ2

u,0

∞∑
l=1

mθi,l,0mθj ,l,0, (69)

and
∑∞

l=1 |mθi,l,0mθj ,l,0| < ∞ for all i, j = 1, ..., p + 4, which follows directly for i, j =

2, ..., p+ 4, since all coefficients in the polynomials are O(l−d−1). For the partial derivative

w.r.t. d, note that ad,l,0, bd,l,0 are O(l−d−1(1 + log l)), and
∑∞

l=1 l
−1 is a harmonic series,

so that Var(
∑∞

l=1 l
−1ut−l) = σ2

u,0

∑∞
l=1 l

−2 is bounded by the limit of the Riemann zeta

function ζ(s) with s = 2. Consequently in (68), n−1
∑n

t=1 E(ν2
t |F̃t−1)

p−→ µiµjΩ
(i,j)
0 , where

Ω
(i,j)
0 =


∑∞

l=1mθi,l,0mθj ,l,0 + ∂σ2
u

∂θi

∂σ2
u

∂θj

κu,0−1

4σ4
u,0

if both θi, θj ∈ {σ2
η, σηε, σ

2
ε},∑∞

l=1mθi,l,0mθj ,l,0 else.
(70)

Since νt is stationary, a central limit theorem for MDS (cf. e.g. Davidson; 2000, th. 6.2.3)

applies so that Sn
d−→ N(0,Ω0) with entries of Ω0 as given in (70).

For asymptotic normality of the QML estimator it remains to be shown that the Hessian

matrix satisfies a UWLLN (Wooldridge; 1994, th. 4.4), which holds if a WLLN applies to

the Hessian matrix and

sup
θ∈Θ∗(κ)

∣∣∣ 1
n

n∑
t=1

∂3

∂θ3
lt(θ)

∣∣∣ = Op(1), (71)
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for any fixed κ ∈ (0, 1/2), see Newey (1991, cor. 2.2) and Wooldridge (1994, th. 4.2).

A WLLN holds for the Hessian matrix

Ht(θ) =
∂2lt(θ)

∂θ∂θ′
= − 1

σ2
u

[
∂ut(θ)

∂θ

∂ut(θ)

∂θ′
+ ut(θ)

∂2ut(θ)

∂θ∂θ′

]
+Rσu,t, (72)

Rσu,t =
∂σ2

u

∂θ

[
1

2σ4
u

∂σ2
u

∂θ′
− 1

σ6
u

u2
t (θ)

∂σ2
u

∂θ′
+

2

σ4
u

ut(θ)
∂ut(θ)

∂θ′

]
,

if (72) satisfies the absolute summability condition for (42). Rσu,t holds the additional

terms for the partial derivatives w.r.t. σ2
η, σηε, σ

2
ε and satisfies the absolute summability

condition for (42) since the first partial derivatives were shown to be absolutely summable

in the proof of theorem 4.1. The same argument applies to ∂ut(θ)
∂θ

∂ut(θ)
∂θ′

in (72), so that it

remains to be shown that absolute summability also holds for ut(θ)
∂2ut(θ)
∂θ∂θ′

. Note that the co-

efficients in ∂2φ+(Ld)/(∂θ∂θ
′) = −∂2/(∂θ∂θ′)

∑p
j=1 φj(1−∆d

+)j are absolutely summable,

since d > 0 and ∂k∆d
+/∂d

k = (∂k/∂dk)(
∑∞

j=1 πj(d)Lj)+ = [
∑∞

j=1 O((1 + log j)kj−d−1)Lj]+,

see Nielsen (2015, lemma A.1), is absolutely summable. Furthermore, it follows from the

proof of theorem 4.1 that the coefficients of the products (∂ψ̃+(L)−1/∂θ)(∂φ+(Ld)/∂θ
′),

(∂ψ̃+(L)−1/∂θ)(∂∆d
+/∂θ

′), (∂φ+(Ld)/∂θ)(∂∆d
+/∂θ

′) are absolutely summable, so that for

(72) to satisfy the absolute summability condition for (42), absolute summability remains

to be shown for the coefficients ∂2ψ̃+(L)−1/(∂θ∂θ′) = 2ψ̃+(L)−3(∂ψ̃+(L)/∂θ)(∂ψ̃+(L)/∂θ′)−
ψ̃+(L)−2(∂2ψ̃+(L)/(∂θ∂θ′)). Since ∂ψ̃+(L)−1/∂θ satisfies the absolute summability condi-

tion, as shown in the proof of theorem 4.1, and since ψ̃+(L) is a stable moving average

polynomial, it is sufficient to prove that ∂2ψ̃(L)/(∂θ∂θ′) =
∑∞

j=1

∣∣∣∂2ψ̃j/(∂θk∂θl)
∣∣∣ <∞ for

all k, l = 1, ..., p+ 4.

We collect the second partial derivatives of ψ̃j in a matrix Mj

∂2ψ̃j
∂θ∂θ′

=
∂

∂θ

(
ad,j aφ1,j · · · aφp,j

φ̃2j−ψ̃2
j

2ψ̃jσ2
u

−φ̃jπj(d)−ψ̃2
j

ψ̃jσ2
u

πj(d)2−ψ̃2
j

2ψ̃jσ2
u

)
= Mj.

The entries M
(k,l)
j , with k, l = 1, ..., p+ 4, are summarized below. Convergence rates follow

from φ̃j = O(j−d−1), ψ̃j = O(j−d−1), ψ̃−1
j = O(j1+d), and πj(d) = O(j−d−1), as stated in

the proof of theorem 4.1. Furthermore aφk,j = O(j−d−1) as shown in (55), bφk,j = O(j−d−1)

as shown in (54), ad,j = O(j−d−1(1 + log j)) as shown in (60), bd,j = O(j−d−1(1 + log j)) as

shown in (59), and ∂kπj(d)/∂dk = O(j−d−1(1 + log j)k) as given in Nielsen (2015, lemma

A.1). Finally, note that ∂bd,j/∂d = ∂2φ̃j/∂d
2 =

∑p
l=1(−1)l(∂2πj(dl)/∂d

2)
∑p

k=l φk
(
k
l

)
=

O(j−d−1(1 + log j)2) and ∂bφl,j/∂d =
∑l

i=1(−1)i(∂πj(di)/∂d)
(
l
i

)
= O(j−d−1(1 + log j)). In
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the formulas below, denote k, l = 1, ..., p as indices for the p coefficients φ1, ..., φp. Then

M
(1,1)
j =− ψ̃−1

j a2
d,j +

1

σ2
uψ̃j

[(
bd,jσ

2
η −

∂πj(d)

∂d
σηε

)
bd,j +

(
φ̃jσ

2
η − πj(d)σηε

) ∂2φ̃j
∂d2

+

(
∂πj(d)

∂d
σ2
ε − bd,jσηε

)
∂πj(d)

∂d
+
(
πj(d)σ2

ε − φ̃jσηε
) ∂2πj(d)

∂d2

]
= O(j−d−1(1 + log j)2), (73)

M
(1,l+1)
j =− ψ̃−1

j aφl,jad,j +
1

σ2
uψ̃j

[
bφl,jbd,jσ

2
η + (φ̃jσ

2
η − πj(d)σηε)

∂bd,j
∂φl
− bφl,j

∂πj(d)

∂d
σηε

]
= O(j−d−1(1 + log j)), (74)

M
(1,p+2)
j =− ad,j

2σ2
u

(
1 +

φ̃2
j

ψ̃2
j

)
+

φ̃j

σ2
uψ̃j

bd,j = O(j−d−1(1 + log j)), (75)

M
(1,p+3)
j =

−ad,j
σ2
u

(
1− φ̃jπj(d)

ψ̃2
j

)
− 1

σ2
uψ̃j

(
πj(d)bd,j + φ̃j

∂πj(d)

∂d

)
= O(j−d−1(1 + log j)),

(76)

M
(1,p+4)
j =− ad,j

2σ2
u

(
1 +

π2
j (d)

ψ̃2
j

)
+
πj(d)

σ2
uψ̃j

∂πj(d)

∂d
= O(j−d−1(1 + log j)), (77)

M
(1+k,1+l)
j =− ψ̃−1

j aφl,jaφk,j +
σ2
ηbφl,jbφk,j

σ2
uψ̃j

= O(j−d−1), (78)

M
(1+k,2+p)
j =− aφk,j

2σ2
u

(
1 +

φ̃2
j

ψ̃2
j

)
+
φ̃jbφk,j

ψ̃jσ2
u

= O(j−d−1), (79)

M
(1+k,3+p)
j =− aφk,j

σ2
u

(
1− φ̃jπj(d)

ψ̃2
j

)
− πj(d)bφk,j

ψ̃jσ2
u

= O(j−d−1), (80)

M
(1+k,4+p)
j =− aφk,j

2σ2
u

(
1 +

π2
j (d)

ψ̃2
j

)
= O(j−d−1), (81)

M
(2+p,2+p)
j =

3ψ̃4
j − 2φ̃2

j ψ̃
2
j − φ̃4

j

4ψ̃3
jσ

4
u

= O(j−d−1), (82)

M
(2+p,3+p)
j =

3ψ̃4
j + ψ̃2

j φ̃jπj(d)− ψ̃2
j φ̃

2
j + φ̃3

jπj(d)

2ψ̃3
jσ

4
u

= O(j−d−1), (83)

M
(2+p,4+p)
j =

3ψ̃4
j − φ̃2

j ψ̃
2
j − π2

j (d)ψ̃2
j − φ̃2

jπ
2
j (d)

4ψ̃3
jσ

4
u

= O(j−d−1), (84)

M (3+p,3+p) =
3ψ̃4

j + 2φ̃jπj(d)ψ̃2
j − φ̃2

jπ
2
j (d)

ψ̃3
jσ

4
u

= O(j−d−1), (85)

M (3+p,4+p) =
3ψ̃4

j + φ̃jπj(d)ψ̃2
j − π2

j (d)ψ̃2
j + φ̃jπ

3
j (d)

2ψ̃3
jσ

4
u

= O(j−d−1), (86)
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M
(4+p,4+p)
j =

3ψ̃4
j − 2π2

j (d)ψ̃2
j − π4

j (d)

4ψ̃3
jσ

4
u

= O(j−d−1), (87)

and thus Mj = O(j−d−1(1+log j)2), so that
∑∞

j=1 |Mj| <∞. Consequently, the coefficients

of ∂2ut(θ)/(∂θ∂θ
′) are absolutely summable, so that (42) holds for the Hessian matrix.

Hence, the Hessian matrix satisfies a WLLN.

Finally, for (71) to hold, it remains to be shown that ∂Ht(θ)/∂θ satisfies the absolute

summability condition for (42), with Ht(θ) given in (72). In addition to the third partial

derivatives of ut(θ), ∂Ht(θ)/∂θ depends on the cross products of first and second partial

derivatives that have already been shown to satisfy the conditions for (42). Thus, it remains

to be shown that absolute summability holds for ut(∂
3ut(θ)/∂θ

3).

For the same reason as above, the coefficients in ∂3φ+(Ld)/(∂θ
3) = −∂3/(∂θ3)

∑p
j=1 φj(1−

∆d
+)j are absolutely summable, since d > 0 and ∂k∆d

+/∂d
k = (∂k/∂dk)(

∑∞
j=1 πj(d)Lj)+ =

[
∑∞

j=1O((1 + log j)kj−d−1)Lj]+, see Nielsen (2015, lemma A.1), is absolutely summable.

Furthermore, it follows from the proof of theorem 4.1 and from the properties of M
(k,l)
j as

stated above that the coefficients of the cross products (∂2ψ̃+(L)−1/∂θ∂θ′)(∂φ+(Ld)/∂θ),

(∂2ψ̃+(L)−1/∂θ∂θ′)(∂∆d
+/∂θ), (∂ψ̃+(L)−1/∂θ′)(∂2∆d

+/∂θ∂θ
′), (∂2φ+(Ld)/∂θ∂θ

′)(∂∆d
+/∂θ),

(∂φ+(Ld)/∂θ
′)(∂2∆d

+/∂θ∂θ
′), and (∂ψ̃+(L)−1/∂θ′)(∂2φ+(Ld)/∂θ∂θ

′), are absolutely summ-

able, so that for the third partial derivatives of the objective function to satisfy the ab-

solute summability condition for (42), it remains to be shown that the coefficients in

∂3ψ̃+(L)−1/(∂θ3) are absolutely summable. Finally, since absolute summability holds for

∂ψ̃+(L)/(∂θ), ∂2ψ̃+(L)/(∂θ∂θ′), and since ψ̃+(L) is a stable moving average polynomial,

it is sufficient to prove that
∑∞

j=1

∣∣∣∂3ψ̃j/(∂θk∂θl∂θm)
∣∣∣ =

∑∞
j=1

∣∣∣∂M (k,l)
j /∂θm

∣∣∣ < ∞ for all

k, l,m = 1, ..., p+ 4.

In the following, we will make use of ∂aφk,j/∂θ = O(j−d−1(1 + log j)) and ∂bφk,j/∂θ =

O(j−d−1(1+log j)), which is easy to see from (54) and (55), as the partial derivatives w.r.t.

d are O(j−d−1(1 + log j)), all other partial derivatives of bφk,j are zero, and those of aφk,j

are O(j−d−1). Furthermore ∂ad,j/∂θ = O(j−d−1(1 + log j)2) and ∂bd,j/∂θ = O(j−d−1(1 +

log j)2), as the partial derivatives w.r.t. d are O(j−d−1(1 + log j)2), and all others are

O(j−d−1(1 + log j)), which can be seen from (59) and (60). Finally, since ∂kπj(d)/∂dk =

O(j−d−1(1 + log j)k), it follows that ∂2bφl,j/(∂θ∂θ
′) = O(j−d−1(1 + log j)2), which can be

seen directly from (54), and ∂2bd,j/(∂θ∂θ
′) = O(j−d−1(1 + log j)3), which can be seen from

(59).

With these limits at hand, from (78) – (87) is easy to see that ∂M
(k,l)
j /∂θ = O(j−d−1(1+

log j)) for k, l > 1, since ∂M
(k,l)
j /∂d = O(j−d−1(1 + log j)) adds a log factor to the conver-

gence rate, while all other partial derivatives of (78) – (87) are O(j−d−1). Furthermore,

from (74) – (77) it follows that ∂M
(1,k)
j /∂θ = O(j−d−1(1+log j)2) for k > 1, since the partial
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derivative w.r.t. d adds a log factor, while all other partial derivatives preserve the limiting

behavior. Finally, for ∂M
(1,1)
j /∂θ it follows from the limiting behavior of ∂2bd,j/(∂θ∂θ

′) and

∂3πj(d)/∂d3 that ∂M
(1,1)
j /∂θ = O(j−d−1(1 + log j)3). Since the log factor is always domi-

nated by j−d−1, the coefficients of the partial derivatives of Mj are absolutely summable,

so that (42) holds. Thus, a WLLN applies to the third partial derivatives of the objective

function and (71) holds respectively. From this, it follows that pointwise convergence of

the Hessian matrix can be generalized to uniform convergence, so that the QML estima-

tor converges in distribution
√
n(θ̂ − θ0)

d−→ N(0,Ω−1
0 ) with Ω0 as given in (70). This

completes the proof.
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