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1 Introduction

The decomposition of time series into trend and cycle plays a key role in applied research. In
modern trend-cycle models, the long-run dynamics, particularly the integration order of the trend,
must be specified prior to estimation, which opens the door to model specification errors. This
paper introduces an encompassing trend-cycle model that treats the integration order as unknown.
It offers a flexible, robust, and data-driven approach to decomposing time series into trend and
cycle, and is termed the fractional unobserved components model.!

The literature on trend-cycle decompositions has been shaped by the seminal works of Beveridge
and Nelson (1981), Harvey (1985), Clark (1987), and Hodrick and Prescott (1997). Since then, a
variety of unobserved components (UC) models have been proposed, and often the integration order
of the trend was subject to debate. The field is divided into two main groups, one assuming the
trend to be integrated of order one in the spirit of Beveridge and Nelson (1981) and Harvey (1985),
the other group preferring an integration order of two as suggested by Clark (1987) and Hodrick
and Prescott (1997). Since empirical results are sensitive to the choice of the integration order, a
data-driven model selection procedure would clearly be beneficial. However, the literature to date
lacks an encompassing model allowing for trends of different memory. Thus, model specification is
left open to the applied researcher, who often faces a trade-off between the economic plausibility
of the model specification and the economic plausibility of the resulting decomposition. Little
is known about the consequences of model misspecification on the estimates of the unobserved
components. In addition, the asymptotic estimation theory is not fully developed for UC models,
particularly when shocks are not necessarily Gaussian.

This paper aims to bridge these gaps by introducing a novel UC model that specifies the
stochastic trend component x; as a fractionally integrated process of order d € R4, denoted as
x¢ ~ I(d). Tt allows for random walk trend components (as suggested among others by Beveridge
and Nelson; 1981; Harvey; 1985; Morley et al.; 2003) for d = 1, but also includes quadratic stochastic
trend specifications (e.g. those of Clark; 1987; Hodrick and Prescott; 1997; Oh et al.; 2008) for d = 2.
Since the integration order d can take any value on the positive real line and enters the model as an
unknown parameter to be estimated, the model seamlessly links integer-integrated specifications.
By including non-integer d, it allows for even more general patterns of persistence between the
integer cases. Besides the fractional trend, the fractional UC model includes a cyclical component
that encompasses the ARMA specifications common in the UC literature, but also allows for a
broader class of processes such as e.g. the exponential model of Bloomfield (1973). Long- and
short-run innovations are assumed to be martingale difference sequences, which is somewhat more
general than the usual Gaussian white noise assumption.

While the UC literature has mostly considered integer-integrated specifications, there are some
generalizations to non-integer integration orders in the state space literature: For asymptotically
stationary processes (i.e. d < 1/2) Chan and Palma (1998, 2006), Palma (2007) and Grassi and

!Note that the literature has come up with a variety of names for unobserved components models, such as struc-
tural time series models and trend-cycle models among others. To avoid confusion, the term unobserved components
model will be used for any model that specifies one or more time series as a function of latent components and assigns
an interpretation to these components by imposing assumptions on their spectra.



de Magistris (2014) consider approximations to long memory processes in state space form by
truncating either the autoregressive or the moving average representation of the fractional differ-
encing polynomial. Their models have been found valuable for realized volatility modeling (see
Ray and Tsay; 2000; Chen and Hurvich; 2006; Harvey; 2007; Varneskov and Perron; 2018) but
exclude non-stationary stochastic trends that are indispensable for general UC models. Recently,
Hartl and Jucknewitz (2022) studied ARMA approximations to fractionally integrated processes
in state space form, also including the non-stationary domain. So far, the literature has focused
on approximate representations of fractionally integrated processes to reduce the computational
burdens of the Kalman filter. In contrast, this paper suggests an exact state space representation
and provides a closed-form solution to the Kalman filter, thereby avoiding the computationally
costly Kalman recursions.

To also assess the theoretical properties of parameter estimation, this paper derives the estima-
tion theory for both the unobserved components and the model parameters. In line with the UC
literature, the unobserved components are estimated by minimizing the objective function of the
Kalman filter. While the literature typically relies on iterative estimates for trend and cycle via
the Kalman recursions, I derive an analytical solution to the optimization problem of the Kalman
filter.? Since iterative and analytical solution differ only in the way they are computed, both ap-
proaches yield the minimum variance linear unbiased estimator for trend and cycle (Durbin and
Koopman; 2012, lemma 2). However, using the analytical solution is computationally less expen-
sive for the fractional UC model. As an additional advantage, it provides a closed-form solution
to the objective function of the conditional sum-of-squares (CSS) estimator, which is used to esti-
mate the model parameters. Under the assumption that long- and short-run shocks are stationary
martingale difference sequences, the CSS estimator is shown to be consistent. Under the somewhat
stronger assumption that the prediction error of the Kalman filter is also a martingale difference
sequence, the CSS estimator is shown to be asymptotically normally distributed.

The proofs are complicated by non-ergodicity of the prediction errors and non-uniform conver-
gence of the objective function. The latter is caused by a prediction error that is stationary when
the estimate for d is close to the true value, while it becomes non-stationary when the estimate is
too far off. While all proofs are carried out for the conditional sum-of-squares (CSS) estimator,
they are shown to extend seamlessly to the quasi-maximum likelihood (QML) estimator that is
typically used in the UC literature. Furthermore, estimation results are shown to also hold for
models with deterministic terms and correlated trend and cycle innovations (as e.g. in Balke and
Wohar; 2002; Morley et al.; 2003). The finite sample properties of the CSS and QML estimators are
evaluated in a Monte Carlo study, which supports the results on consistency for both estimators.
In addition, the parameter estimates for the integration order outperform the exact local Whittle
estimator of Shimotsu and Phillips (2005), which is biased by the cyclical fluctuations.

An application to monthly sea surface temperature anomalies illustrates the benefits from the
fractional UC model: Temperature anomalies are estimated to be integrated of order around 1.75,

and the hypothesis of an integer integration order is rejected. The resulting trend-cycle decompo-

2 Analytical solutions to the Kalman filter have been derived for trend plus noise models by Burman and Shumway
(2009) and Chang et al. (2009), where the trend is a random walk and the cycle is white noise.



sition finds trend temperature anomalies to be increasing since the mid of the 20th century, while
cyclical temperature anomalies closely match the Oceanic Nino Index.

The rest of the paper is organized as follows: Section 2 introduces the fractional UC model and
discusses the underlying assumptions. Section 3 discusses trend and cycle estimation, while section
4 details parameter estimation. Generalizations of the fractional UC model are discussed in section
5. Section 6 examines the finite sample properties of the proposed methods in a Monte Carlo study,
while section 7 applies the fractional UC model to sea surface temperature anomalies. Section 8
concludes. The proofs for consistency and asymptotic normality are contained in the appendix.
The code for this paper, as well as a computationally efficient R package containing all necessary

functions for fractional UC models, is available at https://github.com/tobiashartl/fracUCM.

2 Model

While the literature on unobserved components (UC) models is vast, it builds on a simple model

that decomposes an observable time series {y;}* into unobserved trend z; and cycle ¢;
Yt = Tt + Ct. (1)

¢t and z; are distinguished by their different spectral densities: The cycle (or short-run component)
¢ is assumed to follow a mean zero stationary process to capture the transitory features of y;. The
trend (or long-run component) z; is characterized by an autocovariance function that decays more
slowly than with an exponential rate. It models the persistent features of the observable series and
is allowed to be non-stationary.

I generalize state-of-the-art UC models by modeling x; as a fractionally integrated process of

unknown memory d € Ry
A‘ixt = MNt- (2)

The fractional difference operator Ai depends only on the parameter d and controls the memory

of z;. Without subscript, it exhibits a polynomial expansion in the lag operator L of order infinite

- : =l (d) j=1,2,..
A= (- =Y m @D, md =4 7 7 1(d) f=li2ms 3

where the weights 7;(d) are determined recursively. The motivation behind (2) and (3) is that the
higher d, the greater the effect of a past shock 7;—; on x;, and the more differencing is required to
eliminate the persistent impact of the past shock via (2). For this reason x; ~ I(d) is said to have
long memory whenever d > 0 (see Hassler; 2019, for more details). The +-subscript in (2) denotes
the truncation of an operator at t < 0, Az, = Adg1(t > 1) = Zz;%) mj(d)z—;, where 1(t > 1)
is the indicator function that takes the value one for positive subscripts of x;_;, otherwise zero.
The truncated fractional difference operator reflects the type II definition of fractionally integrated

processes (Marinucci and Robinson; 1999) and is required to treat the asymptotically stationary


https://github.com/tobiashartl/fracUCM

case alongside the non-stationary case.

Equation (2) encompasses several trend specifications in the literature: For d = 1, it nests the
random walk trend model as considered by Harvey (1985), Balke and Wohar (2002), and Morley
et al. (2003) among others. For d = 2, one has the double-drift model of Clark (1987) and Oh
et al. (2008), but also the filter of Hodrick and Prescott (1997, HP filter in what follows) as will
become clear. For d € N, the model of Burman and Shumway (2009) is obtained. Allowing for
d € Ry seamlessly links these integer-integrated models and allows for far more general dynamics
of the trend: For 0 < d < 1/2, it covers stationary and strongly persistent processes as considered
by Ray and Tsay (2000), Chen and Hurvich (2006), and Varneskov and Perron (2018) for realized
volatility modeling. For 1/2 < d < 1, it allows for non-stationary but mean-reverting processes,
while d > 1 yields non-stationary non-mean-reverting processes that are indispensable for trend-
cycle decompositions of macroeconomic variables among others. Since d enters the model as an
unknown parameter to be estimated, the model allows for a data-driven choice of d and provides
statistical inference on the appropriate specification of UC models.

Turning to the cyclical component, I treat ¢; as any short memory process that is independent

of z; and may depend non-linearly on a parameter vector ¢
oo
e = a(L,p)e =Y aj(p)e—j. (4)
j=0

The parametric form of a(L, ) is assumed to be known. For example, ¢; may be an ARMA process
as typically assumed in the UC literature, but the specification generally captures a broader class
of processes, e.g. the exponential model of Bloomfield (1973).

In what follows, the model (1), (2), and (4) is analyzed under the following assumptions:

Assumption 1 (Errors). The errors e, m; are stationary and ergodic with finite moments up
to order four and absolutely summable autocovariance function. For the joint o-algebra F; =
o((ns,€s), 8 < t), it holds that E(e;|F;—1) = 0, E(e2|Fi—1) = 02, and E(ny|Fi—1) = 0, E(m?|Fi_1) =
0727. Furthermore, conditional on Fi_1, the third and fourth moments of €, n. are finite and equal

their unconditional moments. Finally, €; and ny are independent.

Assumption 2 (Parameters). Collect all model parameters in ¢ = (d, a%, o2, 0", and let ¥ = D x
Yy x Xe x @ denote the parameter space of 1 € ¥, where D = {d € R|0 < din < d < dpae < 00},
2, ={o2 €eR[0 < U%mm <02 <07 par < 0}, Lo = {02 € R0 < Ume < 02 <02 nar < 0},

and ® C R? is convexr and compact. Then for the true parameters g = (do,afm, 06270, @) it holds
that 1y € W.

Assumption 1 allows for conditionally homoscedastic martingale difference sequences (MDS) n;
and €. This is somewhat more general than the UC literature, which typically assumes Gaussian
white noise disturbances (e.g. in Morley et al.; 2003). The generalization is of great practical
importance given the applications of UC models in macroeconomics and finance. Independence of
the shocks is assumed to simplify the derivation of the asymptotic estimation theory in section 4,

and can be relaxed to allow for correlated innovations, see subsection 5.2.



Assumption 2 allows for both, stationary and non-stationary fractionally integrated trend com-
ponents, and for an arbitrarily large interval d € D. Positive integration orders guarantee that x;

is a long-run component, and that it can be distinguished from ¢; based on its spectrum.

Assumption 3 (Stability of a(L,)). For all ¢ € ¢ and all z in the complex unit disc {z € C :
|z| <1} it holds that

(i) ao(p) =1, and 3 22 |aj(p)| is bounded and bounded away from zero,
(ii) each element of a(e™, @) is differentiable in \ with derivative in Lip(¢) for any ¢ > 1/2,

(iii) a(z,¢) = 3232, a;j(p)z? is continuously differentiable in ¢, and the partial derivatives a(z, p) =

3202, 2l i = 3% ()2 satisfy aj() = O ), and 281 =0,

Under assumption 3, a(L,p)™! = b(L,¢) = >0 bj(p) L7 exists, is well defined, and the sum
2720 1bj(¢)] is bounded and bounded away from zero. By the Lipschitz condition it holds that

aj(p) = O(j_l_c), bi(p) = O(j_l_c), uniformly in ¢ € &.

The rate for a;(¢) follows directly from assumption 3(ii), while that for b;(¢) follows from Zygmund
(2002, pp. 46 and 71). The convergence rate for the partial derivative a;(y) is a direct consequence
of compactness of ¢ and continuity of da;(¢)/0¢’. Assumption 3 imposes some smoothness on the
linear coefficients in a(L, ¢), and thus also on b(L, ¢). It is satisfied by any stationary and invertible
ARMA process. For ARFIMA models, the asymptotic estimation theory is well established under
assumptions similar to 1, 2, and 3, see Hualde and Robinson (2011) and Nielsen (2015).

3 Filtering and smoothing

The system introduced in (1), (2), and (4) forms a state space model, where (1) is the measurement
equation and (2), (4) are the state equations for trend and cycle.® This opens the way to the Kalman
filter, a powerful set of algorithms for filtering, predicting, and smoothing the latent components
x¢ and ¢, but also for parameter estimation. In this section, I derive an analytical solution to the
optimization problem of the Kalman filter and smoother. As will become clear at the end of this
section, the analytical solution has two decisive advantages over the usual recursive algorithm: it
is computationally more efficient, and it greatly simplifies the asymptotic analysis of the objective
function for parameter estimation. In addition, it encompasses the HP filter.

Note that y; is only observable for ¢ > 1. Thus, trend, cycle, and parameters can only be
estimated based on a truncated representation of the cyclical lag polynomial. To arrive at a
feasible representation, define the truncated polynomial by (L, p) via by (L, p)c; = b(L, p)ei1(t >

1) = Z;;%) bi(¢)ci—j. Furthermore, collect x4 = (x¢,...,x1)" and ¢ = (¢, ..., 1), and define the

3Section 5 outlines the state space representation and illustrates the dimensions of the system matrices. For
further details on state space models and the Kalman filter, see Harvey (1989, ch. 3).



t x t differencing matrix Sy, and the ¢ x ¢ coefficient matrix B ;

mo(d) m(d) -+ m-1(d) bo(p) bi(p) -+ bi—1(p)
Sus = 0 Wo:(d) 7Tt:2(d) | B, = 0 bo(.SO) bt72'(90) , 5)
0 0 - mo(d) 0 0 - bo(p)

such that Sy a1 = (Aixt,...,A‘ixl)’ and By ci1 = (b (L, @)ct, ..., by (L, p)c1)’. Sqy is defined
analogously to the integer-integrated differencing matrix of Burman and Shumway (2009), and it
holds that S4;S_4: = I, and Sp; = I. In the following, I show the closed-form solutions for the
updating step of the Kalman filter to be given by

R -1 R
Z1(ye1, ) = (B, Bpt +vSyS4t) Bl Beye1 = L1 (ye1,0), (6)

ée1(yer,¥) = v (Bl Boy + VS&,tSd,t)_l SgiSatye1 = ¢e1(ye1,0), (7)

where the fraction v = o2/ 0727 controls for the variance ratio of the innovations, Z.1(y1,v) =
(4 (Y1, 1), ooy 21 (Y21, )’y Ee1(ye1,v) = (E(ye1,), .y é1(ye1,v))" collect the filtered trend and
cycle, and 0 = (d,v,¢')’. (6) and (7) are identical to the recursive solutions from the updating
equation of the Kalman filter. The one-step ahead predictions for x;+1 and c¢;11 are obtained by

plugging (6) and (7) into the state equations (2) and (4)

trea (. 0) = = (ma(d) o mild) B (e 0), ®)

ey 0) = = (ba(e) -+ bulg)) éra (. 0). 9)

Together, the updating equations (6), (7) and the prediction equations (8), (9) form the Kalman
filter, see Harvey (1989, ch. 3.2) for details. Finally, smoothed estimates for x; and ¢; can be
obtained from (6), (7) by setting ¢ = n. They are identical to those obtained by the Kalman
smoother.

To prove (6) and (7), I first consider the objective function of the Kalman filter, which follows
from maximizing the quasi-log likelihood of (1), (2), and (4) with respect to z¢1 = (a4, ..., 21),

ct1 = (¢ty.oycr) given yp1 = (yt, ..., y1) and ¢ = (d, U%,ag,go’)’. This is the same as minimizing

t
) 1 1 2, L (a2
B (g1, ¥) = argmin jz; {02 (L @)y =)l + 25 (aga;) } : (10)
t
. 11 2 1
(o) =angmin -4 5 [A%105 - )]+ 5 04 (Lo ()
Ct:1 j=1 0-77 Ué

Here, the first residual in (10) stems from plugging (4) into the measurement equation and solving
for €;, while the second is from (2). Analogously, the first term in (11) follows from inserting (2) into
(1) and solving for n;, while the second follows from solving (4) for €¢;. Constant terms are omitted.

As z; and ¢; are estimated based on all observations until period ¢, it holds that Z¢.1(ye1,%) =



Y1 — Ce1(ye1, ). If . and € are assumed to be Gaussian, the optimization problems in (10) and
(11) yield the conditional expectations @1 (ys:1,v) = Ey(ve1|ye1) and .1 (ye1,v) = Ey(cra|ye),
see Durbin and Koopman (2012, lemma 1), where the expected value operator Ey(2;) of an arbitrary
random variable z; denotes that expectation is taken with respect to the distribution of z; given
. If m4, € are not normally distributed, the optimization problems (10) and (11) remain valid.
The filtered Z¢.1(yp1,v), ¢u1(ye1,1) are the projections of x4, and ¢ on the span of y;.1, and are
the minimum variance linear unbiased estimators for xs; and ¢:.; given the observable information
Y1, ..., Yt (Durbin and Koopman; 2012, lemma 2). For t =n, d =2, b(L,p) =1, v = 062/0727, (10)
becomes the HP filter with v being the tuning parameter. Thus, the HP filter constitutes a special
case of the fractional UC model.

From (5), a matrix representation of (10) and (11) follows

. 11 I
T (ye1,9) = arg min {0_62 | Bt (ye:1 — xe1)||” + 072]55t;18d7tsd,t33t:1} , (12)
~ 1 1 2 1 / /
1 (Y1, ) = argmin — < — [[Sa ¢ (ye1 — ce)l|” + ¢ By Botcra ¢ (13)
cr t oy of ’
where ||-|| denotes the Euclidean norm. Calculating the derivative of (12) and (13) and solving

for x; and ¢; yields (6) and (7). Note that (6) and (7) do not depend on the exact magnitudes
of a% and o2, but only on their ratio v, 0 < v < co. Thus, for any positive constant K > 0, the
parameter vector ¢* = (d, KU%,KO’?,(,O/)I yields the same estimates #4.1(ye.1,v*), é.1(ye1,¥*) as
(6) and (7). By defining the parameter vector § = (d,v,¢’)’, one has Tv.1(ye1,v) = Te1(ye1,0)
and é.1(ye1,v) = é4.1(ye1, 6). This will be helpful for parameter estimation in section 4, since the
conditional sum-of-squares estimator is not identified for ¢. Also, using 6 reduces the dimension of
the parameter vector, which speeds up the optimization. However, ¢ can also be estimated directly
by maximum likelihood as will be shown in subsection 5.3.

From the filtered latent components in (6) and (7), the one-step ahead predictions for x411 and
ct4+1 follow immediately by plugging (6) and (7) into the state equations (2) and (4). This yields
(8) and (9). While (6), (7), (8), and (9) are required for parameter estimation, as discussed in
the next section, estimates for z; and ¢; typically reported are the projections of z; and c¢; on the
span of y1, ..., Yn, i.e. on the full sample information. They follow immediately from (6) and (7) by
setting ¢ = n, and are identical to the Kalman smoother.

Note that the filtered, predicted and smoothed z; and ¢; can be computed either via the
analytical solution above or recursively by executing the Kalman recursions (see Harvey; 1989, ch. 3,
for the latter). Both approaches yield identical results and only differ in the way they are computed.
However, the analytical solution has two decisive advantages over the traditional recursions: (i) It is
computationally superior for fractional trends. As the state vector of the fractional trend in (2) is of
dimension n—1, the dimension of the state vector for both trend and cycle is of dimension m > n—1.
Thus, each recursion of the Kalman filter involves multiple multiplications of (m x m)-dimensional
covariance and system matrices, and each multiplication requires 2m?3 — m? flops (Hunger; 2007).
The analytical solution also requires the expensive computation of an (n x n) inverse, however the

underlying matrix is symmetric, positive definite, and thus the Cholesky decomposition can be used



to reduce the complexity to n + n? + n flops per iteration (Hunger; 2007). Since m > n — 1, the
analytical solution speeds up the computation considerably. This allows to run the Monte Carlo
studies in section 6, which would otherwise be computationally infeasible. (ii) The solution allows
to derive an objective function for parameter estimation that does not depend on the Kalman
recursions and is thus easier to analyze. As usual, the objective function for parameter estimation
is set up based on the one-step ahead prediction error, that is obtained by plugging (8) and (9)
into the measurement equation (1). Since (8) and (9) depend only on the observable yq, ...,y as
well as on the model parameters, the objective function does not depend on a recursive solution for
the filtered trend and cycle. This greatly simplifies the asymptotic theory for parameter estimation
in section 4, since the convergence rates of all coefficients are either known, or can be derived

immediately.

4 Parameter estimation

To estimate 6y = (do, 1o, ¢p)’, denote © = D x X, x @ the respective parameter space, where
Y, ={v € R0 < vmin <V < Upag < o0}, and D, @ as defined in assumption 2. By assumption
2, O is convex and compact. As usual in the state space literature, I set up the objective function
for parameter estimation based on the one-step ahead forecast error for y;41, denoted as vy41(0) =

Ye+1 — Te41 (Y1, 0) — E41(ye1,0). By plugging in (8) and (9), v¢41(f) can be represented as

ve41(0) = Al yrra+v (bi(p) — mi(d) -+ be(p) — m(d)) (Bl Bpt + vS)Sar) " S Sapyea.  (14)

vi+1(0) depends on the fractionally differenced observable y;41, as well as on past Sgyr1 =
(Aiyt, - Aiyl)’, weighted by the 1 x t coefficient vector on the right-hand side of (14) that fully
depends on 6. Let &41(d) = Ay = AT Pn1+ A% e and &1 (d) = (&(d) -+ €1(d)) = Sazye
denote the fractionally differenced ;11 and y;.1 respectively. Then, (14) can be written as

t t
ve1(0) = §a(d) + > 70, )615(d) = D 75(0,6)€r41-5(d), (15)
j=1 7=0

where 79(0,t) = 1, and (11(0,t) - - - 7(0,t)) = v(b1(p)—m1(d) - - - bt(go)—ﬂt(d))(B:D7tB%t+yS('LtSd7t)*15’(’1,1&
collects the ¢ coefficients belonging to &:(d), ..., £1(d) in (15). The conditional sum-of-squares (CSS)

estimator for 6y follows from minimizing the sum of squared forecast errors
1 n
0= i 0 0)=—> vi(0). 16
argmin Q(y, ), Q(y.9) ntzlvt( ) (16)

Since the objective function is proportional to the exponent in the quasi-likelihood function, (16)
is similar to the quasi-maximum likelihood estimator that is typically used in the state space
literature, see e.g. Durbin and Koopman (2012, ch. 7). While the latter allows for a time-varying
variance of the prediction error, (16) implicitly assumes a constant variance of the prediction error.

However, as subsection 5.3 discusses in greater detail, the filtered prediction error variance of the



fractional UC model converges to its steady state solution at an exponential rate. Thus, (16) and
quasi-maximum likelihood estimation are asymptotically equivalent. Differences arise only due to
a different weighting of prediction errors at the very beginning of the sample. However, (16) is
computationally much simpler, because it avoids the Kalman recursions for the prediction error
variance. Furthermore, parameter estimation via the steady-state Kalman filter is identical to (16)
after some burn-in period, see Harvey (1989, ch. 4.2.2).

While the asymptotic theory for CSS estimation is well established for autoregressive fraction-
ally integrated moving average (ARFIMA) models, see Hualde and Robinson (2011) and Nielsen
(2015), only little is known about the asymptotic theory for unobserved components models of such
generality. For the sub-class of I(1) UC models with Gaussian white noise shocks 7, and ¢, the
asymptotic theory can be inferred from the ARIMA literature (Harvey and Peters; 1990; Morley
et al.; 2003). Unfortunately, no such results are available for UC models with fractional trends,
so the asymptotic theory for parameter estimation of fractional UC models must be derived from
scratch. While the proofs in this section are given for the (simpler) CSS estimator, it is shown in
subsection 5.3 that they also apply to the traditional quasi-maximum likelihood estimator. Due
to the encompassing nature of the fractional UC model, the results below also hold for CSS and
quasi-maximum likelihood estimation of all sub-classes of UC models such as e.g. integer-integrated
models with MDS shocks.

Theorem 4.1. For the model in (1), (2), and (4), and under assumptions 1 to 3, the estimator 0

as defined via (16) is consistent, i.e. 0 -2 0y as n — co.

The proof is contained in Appendix B. While consistency ultimately follows from a uniform
weak law of large numbers (UWLLN), showing that the UWLLN holds is complicated by the
non-uniform convergence of the objective function within @, as well as by the non-ergodicity of
the prediction errors in (14): First, as can be seen from (14), the prediction errors are I(dy — d),
and thus are asymptotically stationary for dy — d < 1/2, and otherwise non-stationary. In the
former case, a UWLLN can be shown to hold for the objective function, while in the latter case a
functional central limit theorem holds under some additional assumptions. Consequently, uniform
convergence of the objective function fails around the point d = dyp — 1/2. Following the idea of
Nielsen (2015), I partition the parameter space D into three compact subsets, one where v;(6) is
asymptotically non-stationary, one for stationary v;(#), and an overlapping subset. Next, whenever
0 is not contained in the stationary region of the parameter space, I show that the objective function
approaches infinity with probability converging to 1 as n — oo. Thus, the relevant region of the
parameter space reduces asymptotically to the region where dyp —d < 1/2 holds, and where uniform
convergence of the objective function is not hindered.

Second, even within the asymptotically stationary region of the parameter space, the forecast
errors are non-ergodic, as can be seen from (14) and (15): The truncated fractional differencing
polynomial Ai includes more lags as ¢ increases, and thus & (d) = Aiﬁdom + Aict is non-ergodic.
In addition, 7;(6,t) in (15) depends on t. Consequently, even for dy — d < 1/2, a law of large
numbers for stationary and ergodic series does not apply directly to v¢(#). I tackle this problem by

showing that the difference between the prediction error in (14), and the untruncated and ergodic



o (0) = >3 7;(0)&—;(d), is asymptotically negligible in probability, where & (d) = A%~ %, + Ade,
is the untruncated residual, while the coefficients 7;(6) stem from the oco-vector (71(0),m2(0)---) =
v(bi(p) — m1(d), b2(p) — ma(d), - ) (B 0 Byoo + 1/5’21700561700)*15&’00, and 79(6) = 1. Since () is
stationary and ergodic within the stationary region of the parameter space, it follows that a weak
law of large numbers applies to the objective function. The final part of the proof is to strengthen
pointwise convergence in probability to weak convergence, which yields the desired result of theorem
4.1.

With a consistent parameter estimator at hand, I next derive the asymptotic distribution of

the CSS estimator. For this purpose, assumption 3 needs to be strengthened.

Assumption 4. For all z in the complex unit disc {z € C: |z| < 1}, it holds that a(z, @) is three
times continuously differentiable in ¢ on the closed neighborhood Ns(pg) = {p € @ : |p — po| < 6}

. . . 0%a; 11— da; 11—
for some ¢ > 0, and the derivatives satisfy W“ggzl) =019, and Wﬁw = 0(;7179),
for all entries o(ry, vy, P(m) of -

Assumption 4 is similar to assumption E of Nielsen (2015), and strengthens the smoothness
conditions of the linear coefficients in a(L,p). It ensures absolute summability of the partial
derivatives, which is used to prove uniform convergence of the Hessian matrix and thus to evaluate
the Hessian matrix at 6y in the Taylor expansion of the score. The convergence rates of the (second
and third) partial derivatives are a direct consequence of compactness of Ns(pg) together with
continuity of the partial derivatives. Assumption 4 still includes the class of stationary ARMA

processes, and even allows for a slower rate of decay of the autocovariance function.

Assumption 5. The true prediction error of the untruncated process 0¢(0p) is a MDS when adapted
to the filtration ff = 0(E,5 < t), where & = &,(dp).

Assumption 5 can be motivated as follows: As shown in the proof of theorem 4.1, the prediction
error of the Kalman filter converges to the untruncated, stationary and ergodic o,(6y) = v(6p) +
op(1) as t — oo, while Aioyt = &(do) = &+ 0,(1) as t — 0o, and thus the (relevant fraction) of the
filtration .7-"5 asymptotically equals the filtration generated by the Aioys, 1 < s <t. Consequently,
assumption 5 requires the prediction error of the Kalman filter to converge to a MDS when adapted
to a filtration that asymptotically is equal to the filtration generated by the differenced, observable
variables. For assumption 5 to be satisfied, the one-step ahead florecasts for trend and cycle in
(6) and (7) must converge to their expectations conditional on ]-"f . Since 0:(6y) plays the role of
the (asymptotic) residual for fractional UC models, assumption 5 fits well to the usual assumption
of MDS residuals for CSS estimation, see e.g. Hualde and Robinson (2011), Nielsen (2015), and
Hualde and Nielsen (2020). In the UC literature, Dunsmuir (1979, ass. C2.3) imposes the same
assumption for his stationary signal plus noise model, but also discusses the possibility of relaxing
the assumption (see Dunsmuir; 1979, pp. 502f). Trivially, assumption 5 is satisfied if long- and

short-run innovations are Gaussian.

Theorem 4.2. For the model in (1), (2), and (4), under assumptions 1 to 5, the estimator 0
as defined via (16) is asymptotically normally distributed, i.e. \/n <é — 00) 4, N(O,ag,oﬂal) as
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n — oo, with 030 = limyy0 Var(ve(0o)) = Var(9:(0o)), and $20 has the (i, j)-th entry Qo, . =
o (9) Ot ( L.
E( j |9 90 t ’0 00)} Za] _1a,q+2

The proof of theorem 4.2 is contained in Appendix C. As usual, the asymptotic distribution of
the CSS estimator is inferred from a Taylor expansion of the score function around 6y. Analogous
to Robinson (2006) and Hualde and Robinson (2011), it is first shown that the normalized score
at 0y is asymptotically equivalent to the score function of the untruncated, stationary and ergodic
residual \/n(9Q(y,0)/09)|,_q = (2/v/1) 37— 5(00)(00:(8) /90)| ,_, . Next, a UWLLN is shown
to hold for the Hessian matrix, so that it can be evaluated at 6y in the Taylor expansion, and the
difference between the truncated and untruncated Hessian matrix is shown to be asymptotically
negligible in probability. Therefore, both the score and the Hessian matrix in the Taylor expansion
can be replaced by their untruncated counterparts. While a weak law of large numbers applies
to the untruncated Hessian matrix, under assumption 5 a central limit theorem for martingale
difference sequences applies to the score and yields the asymptotic distribution. Finally, while
theorem 4.2 does not give an analytical expression for the covariance matrix of the CSS estimator,

it shows that (2, ! can by estimated via the numerical Hessian matrix.

5 Generalizations

One key advantage of the fractional UC model is its state space representation: It makes the
Kalman filter and smoother applicable, enables quasi-maximum likelihood estimation of the model
parameters, allows to diffusely initialize the filter, and to seamlessly add additional structural com-
ponents to the model. In addition, several useful methods and generalizations become available
that are beyond the scope of this paper, such as frequency-domain optimization, additional observ-
able explanatory variables, time-varying and nonlinear models, and mixed-frequency models among
others; see Harvey (1989) for an overview. In this section, I outline some generalizations of the frac-
tional UC model that are of immediate applied relevance: Subsection 5.1 introduces deterministic
components to the model, while subsection 5.2 allows for correlated trend and cycle innovations.
Subsection 5.3 generalizes parameter estimation to the quasi-maximum likelihood estimator. For
all three modifications, the asymptotic results of section 4 are shown to remain valid. However,
before turning to the three generalizations, I first introduce the state space representation of the
fractional UC model.

The basic state space representation has the form

Yr = Zoy + ug, (17)
o = Tay_1 + RG, (18)

where the states may be partitioned into oy = (ozgx) ,agc) ,ay) ), with (n — 1)-vectors for trend

a,(f) = (T¢,Tt—1, .., Tt—ny2), and cycle agc) = (¢t,Ct—1, .-y Ct—nt2)’. The observation matrix is
Z = (2", 7z 20 where Z®) = (1,0,...,0), 29 = (1,0,...,0) are (n — 1)-dimensional row
(z) c)

vectors picking the first entry of ;"' and «a; '. For the transition equation (18), one has T =
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diag(T(‘”),T(C),T(’")), R = diag(R(z), R, R(r))’

—mi(d) —ma(d) -+ —m-1(d) —b1(p) —ba(w) - —bp_1(p)
7l@) — 1 0 ’ 70 — L 0 ,
0 1 0 0 1 0

and R® = (1,0,...,0), R©® = (1,0,...,0) are (n — 1)-vectors picking the respective entries
of ¢ = (nt,et,ct(r)/)’ . Finally, the components ay), Q(r) allow for general specifications with
agr) = T(’")agi)l + R(T)Ct(r) that load on y; via Z(T)ozy). They may capture additional stochas-
tic trends (possibly of different memory) and seasonal components among others. Furthermore,
u; may account for additional terms in the measurement equation, such as measurement errors,

(r)
t

deterministic terms, or observable explanatory variables. While both, o, ' and u; are implicitly set

to zero in section 4, their specification in practice is left open to the applied researcher. Finally,

Var(¢;) = Q.

5.1 Deterministic components

In practice, deterministic components often need to be considered. As will become clear, such terms
can be straightforwardly added to the state space framework, and their estimation can be carried
out efficiently by a combination of the Kalman filter, the GLS estimator, and the CSS estimator. For
the GLS estimator to be a consistent estimator for the coefficients of the deterministic components,
the deterministic terms must diverge at a rate similar to the divergence rate of the stochastic trend.

Deterministic components can be taken into account either by detrending the data prior to
estimating the fractional UC model, or by adding the components to the state space model. How-
ever, prior detrending biases the estimates for both deterministic and stochastic trends whenever
the data are non-stationary, and thus should be avoided (Harvey; 1989, ch. 6.1.3). An alternative
is to include the deterministic terms into the state vector and to explicitly model their dynamics
via the state equation (18). However, state space models with deterministic components in the
state vector are not stabilisable, so the Kalman filter does not converge to its steady state solution
and the CSS estimator is not applicable, see Harvey (1989, ch. 4.2.5). Following the suggestion
there, I place the deterministic terms directly in the measurement equation (17). This allows to
estimate the deterministic components by the GLS estimator and does not interfere with the steady
state convergence of the Kalman filter. The remaining parameters 6y can be estimated via CSS as
described in section 4, with the asymptotic theory being unaffected.

To model the deterministic terms, I set uy = p/w; in the measurement equation (17), where
wy is a non-stochastic k-vector holding k deterministic components, and p is a k-vector of un-
known parameters to be estimated. The modified measurement equation is then y; = p/w; + Zay.
Letting W = (wy,...,w,)" denote the n X k matrix collecting all wy, and V' = Var(z1., + ¢1.)
denote the variance-covariance matrix of x1., + c1.,, the GLS estimator for u is given by g =
(W'VAW) W'V =1y, see Harvey (1989, ch. 3.4.2). As also shown there, it is not necessary to

compute V1. To see this, assume for the moment that y; — u/w; was observable. The Kalman filter,
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when applied to y; — p/'wy, yields the filtered values for trend and cycle in (6) to (9), together with
the prediction errors as denoted by v} (#) in the following for the modified model. These prediction
errors correspond to the linear filtering #(6)(y1., — W), where F'(9) from the Cholesky decom-
position V=1(¢) = F(0) D71 (y)F(0) is a p.d. lower triangular matrix with ones on the leading
diagonal, D(%)) is a diagonal p.d. matrix, and V' (v) is the covariance matrix of x1., + ¢1., condi-
tional on . Since the Kalman filter is linear, it can be applied separately to the observable ¥, and
wy, yielding F(0)y1., = y*(0) and F ()W = W*(0) as prediction errors. The GLS estimator fi then
follows from regressing y*(6) = (y;(0), ...,y (6)) on W*(0) = (wi(0),...,w}(0)), see Harvey (1989,

ch. 3.4.2). The concentrated CSS estimator 6 = (d, 7, @)’ follows from minimizing the modified

sum of squared prediction errors

0

1 n
in— > v} () 1
argmin — 2 v (0)° (19)

and v} (0) = y; (0) — f/wy(0) is the GLS residual. Asymptotic standard errors can be obtained from
the Fisher information matrix (Harvey; 1989, ch. 4.5.3 and ch. 7.3).

To derive the asymptotic properties of both the GLS estimator i and the concentrated CSS
estimator (19), let the j-th term in w; be wj; = otPi), t > 1, Bj € R, such that w;; is a
polynomial trend. I will only consider —1 < ; < dp for all j, as the lower bound is required for
Aiotﬁi = O(t%~%) to hold, see Robinson (2005), while the upper bound ensures that the fractional
stochastic trend is not drowned by the deterministic terms. This guarantees that the results on
consistency and asymptotic normality of the CSS estimator in theorems 4.1 and 4.2 remain valid.
However, at least for CSS estimation of ARFIMA models, Hualde and Nielsen (2020) recently
derived the asymptotic theory where they also allowed for deterministic trends of higher power,
Bj > dp. As the focus of this paper is not on the deterministic components, showing their results
to carry over is left open for future research.

Note that within —1 < 3; < dp, the arguments for consistency of the CSS estimator of
remain unchanged: y*(0) = F(0)y1., is I(dyp — d) and precisely equals the initial prediction error
(14) in section 3 if y; contains no deterministic terms, since F'(0)y;., is the residual from applying
the Kalman filter as defined in section 3 to yi1., given the parameters 6. If deterministic terms are
present in y;, then y*(0) = F(0)y1., equals the prediction error (14) shifted either by a constant,
or by an o(1) term (depending on how close f3; is to do, as will become clear). Therefore, also the
prediction error vy (0) = [y*(0) — W*(Q)(W*/(H)W*(9))*1W*/(0)y*(9)](t) is I(dy — d). Thus, both
y; (0) and vy (0) are asymptotically stationary for dy — d < 1/2, otherwise non-stationary. By the
same proof as for (B.1), the objective function (19) can be shown to converge in probability whenever
dop—d > —1/2, and to diverge in the opposite case. Therefore, the probability of the CSS estimator
to converge within the non-stationary region of the parameter space is asymptotically zero. Thus, it
is sufficient to consider the region of the parameter space where v} () is asymptotically stationary.
Within this region, the same proof as for theorem 4.1 applies, showing that a UWLLN holds for
the objective function. Thus, 0 is consistent. This result is somewhat obvious, as the assumption
on j3; ensures that the filtered y;(fy) contains at most deterministic terms of order O(1).

For the GLS estimator, define u*(0) = (uf,...,u}) = F(0)(x1., + c1.n) as the residual from
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applying the Kalman filter to the true x;., and ci.,. u;(0) would equal the prediction error vy (6)

if there were no deterministic terms. The GLS estimates i are thus
= (W (@)W (0)"' W (0)F(

(0 0)yn
W (GW*(6)" W (6)F (6 )[Wuo+m1n+61 n] (20)
= po + (W (@)W (0)) ' W™ (0)u(8),

where pg denotes the true coefficients to be estimated. [ is consistent if and only if the latter
term in (20) is op(1), i.e. the bias converges to zero as n — oco. For the purpose of illustration, I
will focus only on a single deterministic term, such that W*(8) = (w}(6), ..., w(#))’. However, the
results carry over directly to several deterministic components. First, note that by the fractional
differencing via F(6), wf(f) = O(tﬁﬂz), while u () ~ I(do—d). By consistency of the concentrated
CSS estimator, u}(f) is asymptotically 1(0), while w; () = O(t*~%), and thus 7, w{fz 6) =
S O(t2B=d0))  see Hualde and Nielsen (2020, lemma S.10). Hence, for a single deterministic

component, the bias term in (20) can be written as

1 x(0 w* )

where n_l_Q(ﬁ_J)Z?:l w;“z (5) is bounded from above and below as n — oco. In contrast, by Hualde
and Nielsen (2020, eqn. (S.88)), n_1_2(5_d)2?:1 wiuf(0) = op(1) if and only if dy —1/2 < 4. Thus,
the GLS estimator for the deterministic terms is consistent only if the deterministic and stochastic
trends diverge at similar rates. As also can be seen from (21), the power of the deterministic term
affects the rate of convergence of the GLS estimator: Since n~/ 2*(5*62)2?:1 w(0)ut(0) converges
in distribution when n — oo, see Hualde and Nielsen (2020, proof of cor. 1), it follows that the
GLS estimator converges at the rate n'/2(5=40) a5 n — oo, and thus the rate is slower than the
standard /n-convergence whenever the deterministic terms are dominated by the stochastic trend.

In summary, any trend of order dyp — 1/2 < f; < dp can be estimated consistently, and the
convergence rate of the GLS estimator will be faster the closer 3; is to dp. This is in line with
the well-established finding in the literature, that an intercept (i.e. 8; = 0) cannot be estimated
consistently for time series with unit roots (dyp = 1), whereas a linear trend (8; = 1) can be
estimated consistently. Moreover, the convergence rate matches the findings of Robinson (2005) for
semiparametric long memory models with deterministic components, of Hualde and Nielsen (2020)
for parametric ARFIMA models with deterministic components, and the general literature on the

estimation of the sample mean for fractionally integrated processes, see e.g. Hassler (2019, ch. 7).

5.2 Correlated trend and cycle innovations

As shown by Morley et al. (2003), at least for integer-integrated structural time series models
of log US real GDP, correlation between permanent and transitory shocks is found to be highly

significant. Therefore, this subsection generalizes the fractional UC model to account for correlated
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innovations
2
Uz o, O
Var =17 7726 =X
€t Ope Of

The new optimization problem of the Kalman filter is then

¢
i"t:l(yt:l,@zl) = arg %}}?%Z [(771' ej) -1 <77]>]
1t

€

t
1 1 2.2 2 2
= arg Igl{l s Z [O’E nj — 20men;€; + Unej] ,
: nYe ne j—1
where 7,/~J = (d, 072,, Tne, 02, ¢")" denotes the new parameter vector that now also includes the covari-
ance oy. By dropping the determinant and plugging in 7; = Aiazj as well as €; = by (L, o) (y; —xj),

the optimization problem can be written as

Zt:1

t
. ~ o1
Fua (e, ) = argmin - >~ [02(ALw))? — 203 A aby (L, 9) (g — ;) + 72 (b4 (L 9) s — 2))? |
Jj=1
_ : 1 2 2 I/ 21 /
= arg I}Eltl}l 7 Un”Bcp,t(yt:l—l’t:l)H - 20776(%:1 - $t:1) B%tsd,txtzl + o] ﬂft;lsd,tsd,txt:l )

where the matrix representation in the last step is derived analogously to (12). The solution to the

optimization problem is then

- 7 -1
1 (Y1, ) = [02BL 1Byt + 0ye(Syy By + Bl pSaz) + 0250 1Sa ]

(22)
X (UgBlwiB%t + Unesél,tho,t) Yt:1,

and, either by solving the same optimization steps for ¢.1(y¢.1,%), or by using yi.1 = .1 (ye1,¥) +
ét:l(yt:la ¢)
A 7 -1
Ce1(Ye1,¥) = [072ZB<;¢B¢¢ + Une(Sél,thp,t + pr,tsdnf) + G?Sé,tSd,t]

2q / (23)
X (Ue Sd,tSd,t + UneB%tSdJ) Y:1-

Obviously, (22) and (23) equal (6) and (7) for o, = 0. As before, the number of parameters in the
optimization may be reduced by dividing the first and second parenthesis in (22) and (23) by 0,2],
defining v = 02/ a% as well as vp = 0y / 0727, and replacing ¢ by 0 = (d, v, v2,¢')’. This is necessary
for the CSS estimator to be identified, however the quasi-maximum likelihood estimator derived in
subsection 5.3 can be used to estimate 1;0 = (do, 072770, One,05 06270, ©p), the true parameters, directly.

The objective function for the CSS estimator can be constructed analogously to section 4: First,
the one-step ahead predictions for x;11 and ¢;4+1 are obtained as in (8) and (9). Next, they are

subtracted from y;y1, which gives the prediction error

Vi1 () = Al ypr + (bi(p) — mi(d) - - be() — me(d))

-1
X [ngB:o,tB%t + Uﬁﬁ(sél,tB%t + B{p,tSd,t) + Ugsé,tsd,t} (USS&,t + O-WEB:o,t) Sd,tyt:1-

(24)
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Based on (24), a CSS estimator for the true parameters 6y = (do, 1o, 2,0, ) can be set up. Note
that y;41 enters (24) in fractional differences, and also note that all terms in (24) have the same
convergence rates as for the case with uncorrelated errors. Thus, the CSS estimator with correlated
innovations can be shown to be consistent and asymptotically normally distributed by carrying out
the same proofs as summarized in section 4. Finally, as noted by Morley et al. (2003), for the
integer-integrated case dyp = 1, the model is not identified if ¢; follows an AR(p) with p < 2,
since the autocovariance function of Ay, dies out after lag one. For non-integer integration orders,

identification is not a problem, as the autocovariance function of Aiyt dies out only at lag ¢.

5.3 Maximum likelihood estimation

Since the vast majority of state space models are estimated by quasi-maximum likelihood (QML),
this subsection relates the CSS estimator to the QML estimator. For this purpose, denote ¢ =
(d, 0727, 02, ) the vector holding the model parameters of the fractional UC model. Furthermore,
let Vary, (v¢(¢)|y1, ..., ye—1) = o2, denote the (hypothetical) variance of v;(¢) that is obtained when

evaluating the conditional distribution of v;(¢)) at 1. While the CSS estimator allowed to concen-

2
ns

not possible for the QML estimator, since the levels of 03], 02 determine o

o2 and model only their variance ratio v = o2/ 0727, this is
2 . . .
v+ Thus, optimization

trate out the variance parameters o

is conducted over . Note further that 1) can be extended to account for correlated innovations,
as described in subsection 5.2. A recursive solution for a?,t is typically obtained from the Kalman
filter, see Durbin and Koopman (2012, ch. 4.3). The quasi-log likelihood is then set up based on
the conditional distribution of v;(1)) and is given by

log L) = — S loga, — 23 1Y)
t=1

2
=1 v

see Harvey (1989, ch. 3.4). Now, if the Kalman filter converges to its steady state solution at
an exponential rate, the QML estimator is asymptotically independent of the initialization of the
Kalman filter, see Harvey (1989, ch. 3.4.2), and Jgt converges to a constant. Thus, neither ini-
tialization of the Kalman filter, nor time-dependence of agt matter asymptotically, and therefore
the CSS estimator in (16) has the same asymptotic distribution as the QML estimator, see Harvey
(1989, p. 129).

For the Kalman filter to converge to its steady state solution at an exponential rate, it is sufficient
that the state space model is detectable and stabilizable (Harvey; 1989, ch. 3.3.3). Detectability
is implied by observability, while stabilizability is implied by controllability (Harvey; 1989, ch.
3.3.1). The state space model as introduced at the beginning of this section is controllable if
Rank(G, TG, ...,T"'G) = m, where m is the dimension of oy, and G = RS’ where S is the upper-
triangular matrix from the Cholesky decomposition of the covariance matrix Q = S’S (Harvey;
1989, ch. 3.3.1). The rank condition can be verified by simple algebra, and depends crucially on
@ having full rank. Controllability means that given a realization of «; at some period ¢, the
innovations (;1j, j = 1,...,m, can be chosen such that an arbitrarily prescribed value of,,, is

obtained. Since in each period a new innovation enters (18) for both z; and ¢, their states in
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Qt+m can be controlled by controlling ¢;1;. Thus, the state space model is controllable. Similarly,
the state space model is observable if Rank(Z',T'Z’, ..., (T")™ 1 Z') = m (Harvey; 1989, ch. 3.3.1),
which again can be verified algebraically. The idea of observability is that a; can be uniquely
determined if v, ..., Yi4m—1, as well as (¢, ..., (+m—1 are known. This is easy to see: Suppose y;;
is known for some j > 0. Then Aiytﬂ- = Nitj + Aictﬂ- can be calculated. With 7, ; at hand, we
can directly calculate c;y;, and thus also x;y;. It follows that the system is observable. Thus, as
n — oo, the CSS estimator and the QML estimator become identical, which was also pointed out
by Harvey (1989, p. 187) for integer-integrated models. Consequently, the results in section 4 also
hold for the QML estimator.

Finally, while computational efficiency clearly favors the CSS estimator, which avoids the
Kalman recursions for the conditional variance of the state vector, the QML estimator may be
advantageous in finite samples where the initialization of the Kalman filter plays a non-negligible
role. In particular, a combination of the QML estimator, for an initial burn-in period, and the CSS
estimator, once the filtered prediction error variance has sufficiently converged, seems promising: It
combines the possibility of diffuse initialization and thus assigns a lower weight to initial prediction
errors, but switches to the computationally efficient CSS estimator once the benefits of the QML
estimator have vanished. The performance of this estimator, typically called the steady-state filter
(Harvey; 1989, p. 185f), is also examined in a Monte Carlo study in section 6 and compared to the
CSS estimator.

6 Simulations

By the means of a Monte Carlo study, this section examines the finite sample estimation properties
for the latent components and parameters of the fractional UC model as introduced in section 2.
By considering both the CSS estimator of section 4 and the QML estimator of subsection 5.3, the
study demonstrates the loss of estimation accuracy of the computationally simpler CSS estimator
by treating the filtered prediction error variance to be constant. Thus, the study puts a price tag on
the computational efficiency gains and provides empirical researchers with guidance on when to use
the CSS estimator. Furthermore, the parameter estimates for the integration order are compared
to the exact local Whittle estimator of Shimotsu and Phillips (2005) for various choices of tuning
parameters as a prominent benchmark. To see whether allowing for fractional trends matters, I also
present results for the integer-integrated UC models in the spirit of Harvey (1985) and Morley et al.
(2003). Doing so, I examine whether fractional trends are well approximated by integer-integrated
models, or whether the estimates for x; and ¢; are significantly biased. Furthermore, I investigate
whether misspecifying d to be one biases the parameter estimates.

Two different data-generating mechanisms are considered: Subsection 6.1 simulates data based
on the fractionally integrated UC model with uncorrelated trend and cycle innovations as introduced
in section 2, while subsection 6.2 in addition allows for correlated innovations as discussed in
subsection 5.2. Both studies vary over the sample size n € {100, 200,300}, the integration c2)rder

Je,O

dp € {0.75,1.00,1.25,1.75}, and the variance ratio of trend and cycle innovations vy = - €
,0
{1,5,10}. Thus, they capture small to medium sized samples as typical in empirical applica%ions
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of UC models, allow for non-stationary mean-reverting trends as well as for non-mean-reverting
trends, and reflect situations where short- and long-run shocks are of equal magnitude as well as
situations where the long-run shocks are drowned by the short-run dynamics. Each simulation
consists of R = 1000 replications.

Unlike the CSS estimator, the QML estimator uses the Kalman iterations for the variance of
the prediction error, thereby allowing it to be time-dependent: In the Kalman filter, the trend is
initialized with variance zero, as implied by the type II definition of fractional integration in (2),
whereas the cycle is initialized with its long-run variance as typical in the UC literature. Next, in a
burn-in period, the QML estimator takes into account the exponential convergence of the prediction

error variance by allowing it to converge to its steady-state value. Once the prediction error

Vary (ve41 () [y1,-,9¢) = Vary (v (¥) [y1 -, ye—1)
Vary (0 (D01, y1—1) < 0.01,
the optimization switches to the steady state Kalman filter, which assumes the prediction error

variance has converged sufficiently, i.e. it satisfies }

variance to be constant from that point on. This avoids further iterations of the Kalman filter
for the prediction error variance, speeds up the computation, and has a negligible impact on the
estimation accuracy.

Both the CSS and the QML estimator are initialized by first evaluating the objective functions
at a large, equally-spaced grid for the model parameters, and the grid point referring to the lowest
value of (16) for the CSS estimator or the lowest negative likelihood is chosen as the starting point
for numerical optimization. As a benchmark, the exact local Whittle estimator of Shimotsu and
Phillips (2005) is introduced, using m = |n’ | Fourier frequencies, j € {.50, .55, .60, .65, .70}.

Parameter estimates are compared by the root mean squared error (RMSE), as well as by the
bias. To assess how well trend and cycle are estimated, the coefficients of determination R2 and
R? from regressing x; and ¢; on their respective estimates from the Kalman smoother are reported
for both CSS and QML estimates.

6.1 Fractional UC model with uncorrelated innovations

In this subsection, I study the finite sample properties of the CSS and QML estimator for the

simple fractional UC model
Yt = ot + ¢, Alzy =, ct —bicg_1 — bacy_2 = €, (25)

where 7 ~ NID(0,1), ¢, ~ NID(0, v) are uncorrelated. The cyclical coefficients are set to by o = 1.6,
ba o = —0.8 to reflect strong cyclical patterns. To allow for a better comparison of the CSS and the
QML estimator, 072770 = 1 is fixed and is assumed to be known in the QML optimization, such that
estimation is carried out over 6 for both the CSS and the QML estimator.

Table A.1 shows the RMSE and the bias for the estimated integration orders for the CSS
estimator, the QML estimator, and the exact local Whittle estimator. As can be seen, both RMSE
and bias decrease as n increases, which is in line with the theoretical results on consistency. As
can be expected from the parametric nature, the fractional UC model yields a much smaller RMSE
as compared to the nonparametric Whittle estimator. The differences are particularly striking for

high 1y, where the signal of the fractional trend is drowned by a strong cyclical variation, and for
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high n. In a direct comparison, the QML estimator slightly outperforms the CSS estimator for the
estimation of the integration order, but except for dy = 1.75, the differences are rather small. Both
the CSS and the QML estimator appear to have little or no bias for dy, while the cyclical dynamics
induce a strong negative bias on the exact local Whittle estimates.

Tables A.2 and A.3 contain the RMSE and the bias for 1y and the autoregressive parameters,
for both the CSS and the QML estimates. In addition to the fractional UC model, the table also
displays the estimation results for an I(1) UC benchmark that sets d = 1, both for the CSS and the
QML estimator. While for b1 o and ba g, the CSS estimator and the QML estimator show a similar
performance, major differences occur for the estimate of vy, where both the bias and the RMSE
are significantly smaller for the QML estimator. In particular, the CSS estimate for vy is always
upward-biased, while no such bias is visible for the QML estimator. While the CSS estimator,
when compared to the QML estimator, showed little to no disadvantages for the estimation of dy,
b1,0, and by , the price for the computational simplicity is obviously a biased, imprecise estimate
for vg. The direct comparison with the I(1) benchmark reveals a slightly smaller RMSE for the
fractional UC model for the estimation of by o and by o, while vg is estimated with a significantly
higher precision via the fractional UC model whenever dy # 1. Interestingly, for dy = 1.75 the
QML estimate of the I(1) UC model for vy is strongly upward-biased, while no bias is visible for
the QML estimate of the fractional UC model.

Table A.4 compares the estimates for z; and ¢ for the fractional UC model and the I(1) UC
benchmark (which sets d = 1). As before, it contains the results for both the CSS estimator and the
QML estimator. As can be seen, differences between the coefficients of determination are almost
negligible for the CSS and the QML estimator of the fractional UC model, with the latter exhibiting
slightly larger coefficients of determination. Strikingly, for dy = 1 the fractional UC model shows
no loss in efficiency compared to the I(1) UC model. For non-integer dy, the fractional model
clearly outperforms the benchmark model, especially when 14 is small. However, for dy < 1.25, the
coefficients of determination are still relatively high for the I(1) benchmark, so that, at least for
integration orders close to unity, integer-integrated UC models appear to be able to approximate
the fractionally integrated trend well, while for dy = 1.75 integer-integrated UC models clearly fail

to resemble the dynamics of the two latent components.

6.2 Fractional UC model with correlated innovations

To examine the estimation properties for the latent components and parameters of the fractional
UC model when the long- and short-run innovations are allowed to be correlated, I modify (25) by

allowing for a non-diagonal @ in

€t

(”t> ~ NID(0, Q). (26)

As before, the cyclical coefficients are set to by o = 1.6, by g = —0.8. Q) is parameterized as 0270 =1,
UZO =1y € {1, 5,10}, which yields medium to strong cyclical fluctuations. To mimic strong (but not

perfect) correlation between long- and short-run innovations, I set opco = po/vo with pg = —0.8.
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Note that while optimization is carried out over @ = (d, v, va,¢’)" for the CSS estimator, and over
Y = (d, ag,ane, o2, ") for the QML estimator, to simplify the interpretation results are reported
for the transformed p = vo/\/v = 0,276 /(oy0e) instead of reporting v or oy .

For the correlated fractional UC model, table A.5 shows RMSE and bias for the estimated
integration orders via CSS, QML, and the exact local Whittle estimator. As before, RMSE and
bias are similar for CSS and QML, and decrease in n. While the fractional UC model outperforms
most of the Whittle estimates, the latter performs surprisingly well for a bandwidth choice of
a = 0.65 for n = 100, and a = 0.70 for n = 200. As before, estimates for the fractional UC model
show little bias for dy, while the benchmarks are significantly perturbed by the cyclical dynamics.

For the CSS estimator, table A.6 shows RMSE and bias for vy, pg, and the autoregressive
parameters both for the fractional UC model and the integer-integrated UC model, while those
for the QML estimator are contained in table A.7. As in the uncorrelated case, CSS estimates
for vy exhibit a large RMSE. For vy < 5, the CSS estimator is typically upward-biased, whereas
it is downward-biased for vy = 10. As can be expected, the bias is more pronounced for the
I(1) benchmark, where the RMSE is also higher. More interestingly, the benchmark estimates for
v are typically upward-biased whenever dy < 1, and downward-biased whenever dy > 1. Since
vy = ‘752,0/0'%,0 is the variance ratio of the innovations, this is natural: Whenever dy < 1, the
random walk for a fixed a% has a faster diverging variance than the I(dy) process. To compensate
for the slower rate of divergence of the I(dy) process, 7 must be upward-biased in the (1) model,
and vice versa for dy > 1. For pg, note that a similar pattern is visible whenever 1y = 1: For
dy < 1, estimates for the correlation between long- and short-run shocks are upward-biased, and
sometimes even positive. This is due to the upward-biased 7, which yields an estimate for the
trend that is smoother than the true one. Thus, the cycle needs to account for the additional
long-run fluctuations that are not captured by the smooth trend, which can be achieved by a
positive estimate for the correlation coefficient. For dy > 1, the smoothed trend of the I(1) model
is more volatile than the true one, and the I(1) UC model re-adjusts by estimating a downward-
biased correlation coefficient, resulting in a more negative relation between trend and cycle than
in the data-generating mechanism. Note that the potential for adjustment of the I(1) model to
fractionally integrated trends via the correlation parameter estimate is limited by the nature of
the correlation p € [—1;1], and thus corner solutions with p = —1 can be expected when dj is
greater than one, and with p = 1 whenever dj is smaller than one. As before, there are only little
differences for the estimates of the autoregressive coefficients between the fractional model and the
I(1) model, except for dyp = 1.75, where the estimates of the (1) UC model are heavily biased by
the misspecification of the integration order.

From the QML results of the fractional UC model in table A.7, it becomes apparent that

52 exhibit some bias and a higher RMSE, particularly when dy and vy are high and n

NQML’> ~€QML
is small. Fortunately, both RMSE and bias decrease as the sample size increases, however the level

5’2
of precision with which the variance parameters are estimated appears to be lower compared to the
other parameters. In line with the CSS results, table A.7 shows a high RMSE for the estimate of
0727’0 from the integer-integrated UC model whenever dy = 1.75, together with strong, positive bias.

This is natural, as the higher variance parameter is required to capture the additional variation that
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is induced by the strong persistence and not captured by the I(1) trend specification. A similar bias
is visible for the estimate of UZO in the integer-integrated setup, indicating that also the cyclical
component is perturbed by the integration order exceeding unity. As for the CSS estimator, for
19 = 1 the correlation estimate ﬁg}\} ;, is upward-biased whenever dy < 1, and downward-biased
whenever dy > 1, while no such bias is detected for the fractional UC model. Moreover, for
dy < 1.25 the autoregressive parameters are estimated with great precision for both, fractional
and I(1) UC model, with both bias and RMSE slightly favoring the fractional model whenever
do # 1. Whenever dy = 1.75, estimates for the AR coefficients from the integer-integrated models
are biased, as for the uncorrelated scenario.

Table A.8 compares the coefficients of determination for the smoothed trend and cycle compo-
nents of the fractional and the I(1) UC model. For the fractional UC model, the QML estimator
typically has a minor advantage over the CSS estimator in terms of the coefficients of determina-
tion. Moreover, for dy = 1 the fractional UC model shows no efficiency loss compared to the I(1)
UC models. For d # 1, the fractional UC model outperforms the integer-integrated models, where
the difference is particularly striking for dg = 1.75.

7 Application

In this section, I apply the fractional UC model to monthly global sea surface temperature anoma-
lies. Trends and cycles of climate time series have recently attracted attention in the econometric
literature, see Chang et al. (2020), Gadea Rivas and Gonzalo (2020), and Proietti and Maddanu
(2022), however fractional trends have not played a role so far. Beyond estimating the memory pa-
rameter, which may be of interest in its own right, the fractional UC model allows to draw inference
on trending and cyclical temperature phenomena, as well as on their interaction once correlation is
allowed for. On the one hand, the estimate for dy allows to test for mean reversion of the trend. If
rejected, the smoothed trend component reveals the extent of permanent temperature rise. On the
other hand, the cyclical component of monthly global sea surface temperature can be matched with
well-understood cyclical climate phenomena, such as El Nifio and La Nina. Estimation results from
the fractional UC model can be compared against those of I(1) and I(2) UC models. In particular,
the hypothesis of an integer integration order is testable, and, if rejected, the fractional UC model
sheds light on the extent to which trend and cycle estimates are perturbed when the trend memory
is misspecified in traditional UC models.

Data on monthly global sea surface temperature anomalies stem from the National Centers
for Environmental Information and are calculated based on the extended reconstructed sea surface
data of Huang et al. (2017).* The series spans from January 1850 to July 2023, thus consists of 2083

observations, and is measured as the deviation from the 1901 — 2000 average in degrees Celsius.

‘Data were accessed on 2023/09/12 and can be downloaded from https://www.ncei.noaa.gov/access/
monitoring/global-temperature-anomalies/anomalies
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To decompose temperature anomalies into trend and cycle, I specify the fractional UC model

p
Yt = o + ¢, Al = p+m, Z bjci—j = €, (27)
j=0
where by = 1, and thus ¢; is an autoregressive process of order p with all roots of b(L) = ?:o bij

outside the unit circle, as typical in the UC literature. The specification of the trend allows for a
non-zero mean in Aixt, generating a deterministic trend of order d in y;. This is a generalization of
integer-integrated UC models, that allow either for a linear deterministic trend whenever z; ~ I(1)
(see e.g. Harvey; 1985; Morley et al.; 2003) or for a quadratic one whenever x; ~ I(2) (see e.g.
Clark; 1987; Oh et al.; 2008). Moreover, Var(n, ;) = @ is allowed to be non-diagonal.
Estimation of the fractional UC model is carried out by the QML estimator as described in
subsection 5.3, as the QML estimator was found to be more accurate for the covariance parameters
of trend and cycle innovations in the simulation studies in section 6 than the CSS estimator.
To estimate the fractional UC model, I draw 100 combinations of starting values from uniform
distributions with appropriate support.® As numerical optimization of the quasi-likelihood of the
fractional UC model is computationally intensive for n = 2083 observations, I use ARMA(3, 3)
approximations for the fractional differencing operator as suggested by Hartl and Jucknewitz (2022)
to speed up the grid search: As they describe in great detail, a continuous function that maps from d
onto the six ARMA(3, 3) coefficients is obtained first by choosing those six ARMA coefficients that
minimize the Euclidean distance between the Wold representation of the fractional differencing
polynomial and the Wold representation of the ARMA polynomials for a sequence of d (here:
d € [0;2.5]). Next, the mapping is made continuous by smoothing over the sequence of d, as well
as the ARMA coefficients, using splines. Consequently, optimization is carried out over d, however
the use of ARMA(3, 3) approximations yields a low-dimensional state space representation of
the (approximate) fractional UC model and thus greatly speeds up the computations. Finally, the
estimate that maximizes the likelihood of the (approximate) fractional UC model is taken as starting
value for the numerical likelihood maximization of the (exact) fractional UC model. Estimation is
carried out for p € [1;3;...; 12] autoregressive lags, and p = 4 is selected as this minimizes both the
Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for the (exact)
fractional UC model. In addition to the QML estimates of the fractional UC model, I also present
estimation results for an (1) and an I(2) UC model that set d = 1 and d = 2 in (27) respectively.5
Table A.9 contains the estimation results for the fractional UC model and the two integer-
integrated benchmarks. All models allow for p = 4 autoregressive lags in (27), as suggested by
the AIC for all models.” The QML estimator for the fractional UC model yields CZQM . = 1.753,
together with a 95% confidence interval [1.634;1.872], and a 99% confidence interval [1.596;1.909].
Consequently, both hypotheses that dy = 1 and dy = 2 are rejected, supporting a specification of the

®More precisely, d is drawn from [1/2;2], @ is drawn from reasonable combinations of o7, o7, and oy that can
generate the realized variation in the observable y:, and autoregressive parameters are drawn randomly from the set
of coefficients that ensure the cyclical AR polynomial to be stable.

SEstimation for the benchmark models is carried out as for the fractional UC model, i.e. via the QML estimator
where starting values are chosen via a grid search with 100 grid points.

"The BIC suggests two autoregressive lags for the benchmarks.
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trend component with a longer memory than a random walk, but a shorter memory than a quadratic

. . . . . A~ _ /\2 A2
trend. The estimated variance ratio of short- and long-run innovations fgng = 67 onie! Tnons =

146621 reveals a very smooth trend component and leaves rich variation to the cycle. Although

the estimate for 03],0 is small, the hypothesis that the long-run component is purely deterministic
(i.e. 0370 = oye0 = 0) is rejected on all conventional levels of significance, as the log likelihood
of the restricted model is 5420.9, such that the test statistic of the likelihood ratio test for the
respective hypothesis is 31.4. Estimates for the autoregressive coefficients suggest a persistent
cyclical pattern, with the greatest eigenvalue of the AR polynomial being 0.92. Moreover, long-
and short-run innovations are found to be mildly negatively correlated.

In line with simulation results in section 6, estimates for the autoregressive coefficients are
very similar for the fractional UC model and the two benchmarks, while the variance-covariance
estimates for long- and short-run innovations are strongly biased for the integer-integrated mod-
els: As also noted in section 6, if in integer-integrated models the integration order of the trend
is assumed lower than in the data-generating mechanism, the additional long-run variation not
captured by the trend specification upward-biases the estimate for the variance of the long-run
innovations. Vice versa, if an integration order higher than in the data-generating mechanism is
assumed, the estimate for 0727’0 will be downward-biased. Consequently, the estimate for 072770 from
the I(2) benchmark is smaller than the one from the fractional UC model, while the estimate from
the I(1) benchmark is greater. Moreover, both benchmarks converge towards the corner solution
of (almost) perfectly correlated long- and short-run innovations. This behavior is again in line with

the simulation results in table A.7 for integration orders 0.75 and 1.75, and a variance ratio v > 1.

Trend temperature anomalies
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Figure 1: Trend temperature anomalies: The plot shows monthly global sea surface temperature
anomalies (black) together with the estimated trend & (y,.1,%gnr) (red, dashed) from the frac-
tional UC model. Shaded areas correspond to warm (red) and cold (blue) periods based on a
threshold of +£1/2 degree Celsius for the Oceanic Nifio Index (ONT).?

9From 1950 on, the ONI is reported by the Climate Prediction Center of the National Weather Service and
can be downloaded from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/0ONI_
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Figure 1 plots the smoothed trend estimate & (.1, 1/AJQ ML), together with the series for monthly
global sea surface temperature anomalies. The smooth nature of the estimated trend component
follows directly from the high estimate of the integration order and the low estimate for the variance
of the long-run innovations. While the first half of the sample does not clearly point towards a
decreasing or increasing nature of the trend component, at least since the mid 20th century trend
temperature anomalies are strictly increasing. In July 2023, the last observational period, the
estimated trend component equals +0.76 degrees Celsius.

Figure A.1 allows to compare the trend estimate from the fractional UC model to those of the
I(1) UC model, the I(2) UC model, and the HP filter with tuning parameter A = 14,400 as typical
for monthly data. Contrary to the fractional model, the benchmarks attribute significant short-run
variation to the trend component: Clearly, the I(1) UC model yields a much more erratic trend
that behaves countercyclical, i.e. it increases during the cold Nina periods and decreases during
the warm Nino periods. HP filter and the I(2) benchmark attribute more of the overall variation
to the trend component, as their estimates for the trend match the observable series much more
closely compared to the smoothed trend component of the fractional UC model. Obviously, the
additional short-run dynamics in the benchmark models are generated by the (almost) perfect
negative correlation coefficient that ties trend and cycle component together, generating (spurious)

cyclical dynamics in the trend component.

Cyclical temperature anomalies

0.44

0.24

0.01

-0.21

1850 1900 1950 2000
time

Figure 2: Cyclical temperature anomalies: The plot shows estimated cyclical sea surface temper-

ature anomalies ¢ (yp.1,60) from the fractional UC model. Shaded areas correspond to warm (red)
and cold (blue) periods according to the Oceanic Nino Index (ONI), see figure 1 for details.

Figure 2 shows the smoothed cyclical component ét(ynzl,zﬂQ mr) for the fractional UC model.

As already noted above, the estimates for the autoregressive parameters as well as for the variance-

v5.php. Asthe ONI is not available for the years prior to 1950, I use the extended multivariate ENSO index (MEILext)
of Wolter and Timlin (2011) that starts in 1871 and can be downloaded from https://psl.noaa.gov/enso/mei.ext/.
The latter is scaled to arrive at the same standard deviation as the ONI. Since the MElLext is a bi-monthly rolling
average, a month is considered a cold (warm) month once the bi-monthly rolling average of the current and the
following month crosses the threshold.
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ratio of short- and long-run innovations attribute rich variation to the cyclical component and
generate a persistent series. Clearly, ¢;(yn.1, 1[)@ M) evolves along the Oceanic Nino index, as peaks
typically occur during El Nifio phases and are followed by troughs during La Nina.

Figure A.2 highlights the differences between the smoothed cyclical component of the fractional
UC model and those of the three benchmarks. Setting the integration order to unity attributes ad-
ditional pro-cyclical variation (in terms of the ONI) to the smoothed cycle. This is straightforward,
as the smoothed trend component of the I(1) UC model was found to behave anti-cyclical. HP
filter and the I(2) UC model yield similar deviations from the cyclical component of the fractional
UC model. They dampen the cyclical variation, because their respective trend components follow
the observable series more closely, leaving fewer variation to be captured by the cycle.

Finally, figure A.3 plots the estimated autocorrelation function up to 48 lags for the one-step
ahead forecast errors of the fractional UC model and the two integer-integrated benchmarks. As
can be seen, misspecifying the integration order to either one or two generates spurious, strongly
persistent autocorrelation in the prediction errors, thus violating the MDS assumption. In contrast,

little to no autocorrelation is left in the prediction errors of the fractional UC models.

8 Conclusion

This paper introduces a novel unobserved components model in which the trend component is
specified as a type II fractionally integrated process. The model encompasses the bulk of unobserved
components models in the literature, allows for richer long-run dynamics beyond integer-integrated
specifications, and for a data-dependent specification of the trend. Trend and cycle are estimated
via the analytical solution to the optimization problem of the Kalman filter. The model allows
for a joint estimation of the integration order and the other model parameters via the conditional
sum-of-squares estimator, which is shown to be consistent and asymptotically normally distributed.
While the asymptotic estimation theory is derived for a prototypical model, it is shown to carry
over to models with deterministic components, correlated long- and short-run innovations, and
quasi-maximum likelihood estimation. For monthly global sea surface temperature anomalies, the
fractional unobserved components model reveals a smooth trend component that is increasing since
the mid of the 20th century, together with a rich cyclical component that matches the Oceanic Nifio
index.

To applied researchers, the fractional unobserved components model offers a robust, flexible,
and data-driven method for signal extraction of data of unknown persistence. It does not require
prior assumptions about the integration order, nor the choice of any tuning parameter. Therefore,
it provides a solution to the model specification problem in the unobserved components literature,

and calls for further applications beyond temperature anomalies.
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A Additional figures and tables

Trend temperature anomalies
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Figure A.1: Smoothed trend component of monthly global sea surface temperature anomalies
(relative to 1900-2000 average in degrees Celsius) via the fractional UC model (red), the I(1) UC
model (green), the I(2) UC model (yellow), and the HP filter with A = 14,400 (purple). The
original series is plotted in black. Shaded areas correspond to warm (red) and cold (blue) periods
according to the Oceanic Nino Index (ONI), see figure 1 for details
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Cyclical temperature anomalies
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Figure A.2: Deviations from smoothed cyclical component of monthly global sea surface tempera-
ture anomalies (relative to 1900-2000 average in degrees Celsius): Figure (a) shows the smoothed
cyclical component of the fractional UC model, while all other plots show the deviations of the re-
spective smoothed cyclical component from the fractional UC model for (b) the I(1) UC model, (¢)
the 1(2) UC model, and (d) the HP filter with A = 14,400 (purple). Consequently, smoothed cycli-
cal components of the integer-integrated models are obtained by adding (a) to the second, third,
and fourth figure respectively. Shaded areas correspond to warm (red) and cold (blue) periods
according to the Oceanic Nino Index (ONI), see figure 1 for details
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Figure A.3: Estimated autocorrelation function of the prediction errors for the fractional UC model
(left), the I(1) UC model (center), and the I(2) UC model (right), together with 5% (red) and 1%
(blue) confidence bands.
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Trend Cycle
n vo do RzCSS RQQML Ré%?; Rég(}\}QL RQCSS R(QQML R(IJ%)S2 RIQ(}\}ZL
100 1 .75 .506 528 484 923 .839 .849 .814 .841
1.00 751 781 762 786 771 789 776 793
1.25 901 922 .865 .885H 702 725 .621 .618
1.75 984 .993 679 735 .536 .594 .045 .039
5 .75 .294 .306 323 .329 .944 .948 938 .943
1.00 .592 .609 .617 .633 .905 911 907 918
1.25 .830 .842 .828 818 .861 870 .855 799
1.75 981 983 78 17 .760 781 .226 .084
10 .75 .229 235 278 279 .965 .969 961 .966
1.00 511 .522 .550 .565 .935 .939 938 .946
1.25 780 788 791 774 .897 905 .899 .852
1.75 975 975 .859 722 .816 .832 .440 124
200 1 .75 .625 637 097 .628 .850 .857 .829 .849
1.00 .868 877 871 .879 793 .802 7197 .805
1.25 967 971 933 .943 735 746 .667 .644
1.75 .998 .999 798 .831 .588 .626 .013 .013
5 .75 .394 408 405 408 .945 .948 .942 941
1.00 743 755 748 763 .909 913 911 917
1.25 929 932 925 913 872 876 .867 817
1.75 997 997 847 .835 788 797 .149 .024
10 .75 311 .320 .338 .330 967 .968 .965 963
1.00 671 .681 .684 .697 937 .939 .940 .944
1.25 901 903 .900 .883 .906 908 904 857
1.75 .995 .996 901 .830 .835 .841 .404 .037
300 1 .75 .689 .697 .664 .686 .856 .860 .835 .849
1.00 909 914 912 915 .801 .806 .804 .808
1.25 982 984 .964 967 744 750 703 675
1.75 | 1.000  1.000 .826 .834 .610 .635 .008 .008
5 .75 482 488 480 ATT7 947 .948 .943 .940
1.00 .815 .823 818 .828 913 915 914 917
1.25 .959 961 .959 .949 875 878 873 .833
1.75 .999 .999 .851 .839 793 .800 .102 .013
10 .75 .394 .399 404 .390 967 967 .965 961
1.00 .759 765 .766 774 .939 941 .940 .943
1.25 941 .943 941 .929 908 910 907 .869
1.75 998 998 919 .843 .838 .843 .388 .018

Table A.4: Coefficient of determination from regressing true trend and cycle z; and ¢; on their
respective estimates from the Kalman smoother for the uncorrelated UC models.
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Trend Cycle
n vo  do RZGSS R%ML Ré‘%?; RS}V)IZL RZCSS R2QML 1'_510%)52 Rég(z{fL
100 1 .75 .534 D73 275 291 .851 .868 752 751
1.00 .750 782 774 774 794 .823 .828 .825
1.25 .904 911 .830 799 763 77 .684 .608
1.75 987 .986 .861 .802 711 .607 .300 124
5 .75 .426 423 422 .385 .949 951 .948 874
1.00 .664 .681 .720 .654 .925 .930 .934 .867
1.25 .861 .864 .848 .827 .900 .903 .885 871
1.75 .980 975 .883 .801 827 .676 484 282
10 .75 .382 .385 373 .350 .963 .970 .959 .903
1.00 D75 .615 .649 078 .939 .950 .948 873
1.25 797 .823 .826 786 912 921 914 .885
1.75 .968 971 .892 .793 841 .740 576 421
200 1 .75 .657 .703 .342 .348 .869 .890 733 735
1.00 .883 .897 .903 .900 .840 .861 .875 872
1.25 971 974 914 .887 .830 .835 .702 622
1.75 .998 .998 910 .890 .791 718 234 077
5 .75 .541 .549 .b74 468 .956 .958 .964 .866
1.00 .816 .829 .846 817 .942 .946 .949 .926
1.25 .946 .949 941 .938 .926 .931 .910 913
1.75 .996 997 .938 .896 .883 788 401 154
10 .75 475 488 498 405 .968 973 973 871
1.00 752 .780 .810 737 .952 961 .965 907
1.25 918 932 .930 .922 .936 947 931 933
1.75 .995 997 .955 .886 .898 813 .006 251
300 1 .75 127 772 .406 412 878 .900 722 725
1.00 .933 941 943 941 .861 878 .889 .886
1.25 987 .988 .950 .932 .853 .858 712 .648
1.75 | 1.000 .999 931 .890 .819 .760 .208 .066
5 .75 .610 .620 .640 .552 .958 .961 .966 .900
1.00 .881 .891 .900 .892 947 .951 .955 .950
1.25 974 .976 971 .970 .935 .938 916 .920
1.75 .999 .999 .963 .906 904 .829 .369 111
10 .75 .539 .b48 .bb4 463 .969 973 974 .891
1.00 .830 .849 871 .849 .956 .964 .968 948
1.25 .958 967 .964 .962 .943 .953 .935 941
1.75 .999 .999 979 .923 918 .846 461 .192

Table A.8: Coefficient of determination from regressing true trend and cycle x; and ¢; on their
respective estimates from the Kalman smoother for the correlated UC models.
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I(d) I(1) 1(2)

Estimate Std. Error Estimate Std. Error Estimate Std. Error
d 1.753 0.061
0727 1.351E-08 1.527E-08 1.032E-04 4.499E-05 6.179E-10 7.081E-10
One -2.202E-06 2.620E-06 -5.465E-04 1.402E-04 -1.094E-06 6.279E-07
062 1.981E-03 6.171E-05 2.901E-03 2.313E-04 1.955E-03  6.103E-05
b1 -1.024 0.022 -0.997 0.020 -1.033 0.019
by 0.101 0.031 0.094 0.024 0.137 0.014
b3 0.064 0.031 0.027 0.007 0.018 0.000
by -0.063 0.022 -0.033 0.012 -0.040 0.006
v 1.466E+05 28.115 3.163E+06
V9 -162.993 -5.296 -1.771E403
p -0.426 -0.999 -0.996
log L(v) 5436.6 5428.1 5430.4
Qy, ) 4.1315 4.9048 4.6589
AIC -10855.1 -10840.2 -10844.8
BIC -10804.4 -10795.1 -10799.6

Table A.9: Estimation results for monthly global temperature anomalies from the fractional UC
model, the I(1) UC model, and the I(2) UC model via the QML estimator. All three models
allow for correlated innovations. Optimization is carried out over ¢ = (d, 072], Tnes 062, b1,...,bs) , and
estimates for v, vy, p are calculated based on the estimates of ¥. log L(1)) denotes the log likelihood,
Q(y, 1) denotes the conditional sum-of-squares, AIC is the Akaike Information Criterion, and BIC
is the Bayesian Information Criterion. Standard errors are obtained from the numerical Hessian

matrix.
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B Proof of theorem 4.1

Proof of theorem 4.1. Theorem 4.1 holds if the objective function (16) satisfies a uniform weak law
of large numbers (UWLLN), i.e. there exists a function g¢(y;1) > 0 such that for all 61,0, € O,
it holds that [vZ(01) — vZ(62)] < gi(ye1)||01 — 62|, and both, v;(0) and g;(y..1) satisfy a WLLN
(Wooldridge; 1994, thm. 4.2). Since vZ(#) is continuously differentiable, a natural choice for g;(y.1)
is the supremum of the absolute gradient, as follows from the mean value expansion of v?(6) about
0, see Newey (1991, cor. 2.2) and Wooldridge (1994, eqn. 4.4).

However, as can be seen from (15), uniform convergence of the objective function fails around the
point d = dy—1/2: Since y; is I(dy), the d-th differences Aiyt+1 = &4+1(d) as well as Sgyi1 = &:1(d)
are I(dy — d), and thus asymptotically stationary whenever d > dy — 1/2, otherwise non-stationary.
Subsequently, I will show that the pointwise probability limit of Q(y,#) is given by

E(©2(0)) for d—dy > —1/2,

plim,,_, Q(y7 9) = plim,,_, Q(yv 0) = (Bl)
s else,
where 7;(0) denotes the untruncated forecast error
o0 oo
0 (0 d) + Z T] gt j Z Tj gt g (B.2)
j=1 7=0

generated by the untruncated fractional differencing polynomial A% and the untruncated poly-
nomial b(L,p) = > 322, bi(p)L. &(d) = A% p, + Ade is the untruncated residual, while the
7j(0) stem from the oo-vector (71(0), 72(0), -+ ) = v(b1(p) — m1(d), ba(p) — m2(d), - - ) (B, s By oo +
VS 0o Sd,00)” 1521 > and 79() = 1 as before. Note that the dependence of the 7;(f) on t is resolved
in (B.2) by letting the dimension of the ¢-dimensional coefficient vector go to infinity. Hence, while
the truncated forecast errors in (15) are non-ergodic, the untruncated errors (B.2) are ergodic
within the stationary region of the parameter space where d — dy > —1/2, as will become clear.
To deal with non-uniform convergence in (B.1), I adapt the proof strategy of Nielsen (2015)
for CSS estimation of ARFIMA models: I partition the parameter space for d into three compact
subsets Dy = Di(k1) = DN{d:d—dy < —1/2 — K1}, Dy = Da(ka,k3) = DN{d: —1/2 — ky <
d—dy < —1/2+ k3}, and D3 = D3(k3) = DN{d: —1/2+ k3 < d — do}, for some constants
0 < k1 < K2 < K3 < 1/2 to be determined later. Note that U?:lDi = D. Within D; and Ds
convergence is uniform, while within the overlapping D>, which covers both stationary and non-
stationary forecast errors, convergence is non-uniform. Denote the partitioned parameter spaces
for  as ©; = D;j x X, x &, j = 1,2,3. Non-uniform convergence of (B.1) is then asymptotically

ruled out by showing that for a given constant K > 0 there always exists a fixed £ > 0 such that

' (dED\Ds('lfr)l,uezy,wequ(y ) ) as n — 0o (B.3)

which implies Pr(G € D3(Rr) x ¥, x ) — 1, i.e. the parameter space asymptotically reduces to the
stationary region ©3(k) = D3(k) x 3, x @. The second part of the proof shows that within ©(ks),
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a UWLLN applies to the objective function, i.e. for any fixed k3 € (0,1/2)

sup ‘Q(y, 0) — E(ﬁ,52+1(9))‘ BN 0, as n — 0o, (B.4)
0 D3 (r3) X 5, X P

which holds if both the objective function and the supremum of its absolute gradient satisfy a
WLLN (Wooldridge; 1994, thm. 4.2). While the results in (B.3) and (B.4) are well established
for the CSS estimator in the ARFIMA literature, see Hualde and Robinson (2011) and Nielsen
(2015), showing them to carry over to the fractional UC model requires some additional effort.
Even within 6 € O3(k3), the forecast errors in (14) are not ergodic for two reasons: First, since
the lag polynomial generated by the truncated fractional differencing polynomial Ai includes more
lags as t increases, &(d) = Aiﬁdom + Al ¢, are not ergodic. Second, the 7;(6,t) in (15) depend
on t. Consequently, also within @3(k3) a WLLN for stationary and ergodic processes does not
immediately apply. I tackle these problems by showing the expected difference between (15) and
(B.2) to be

E [(§141(0) — v011(0))2] =0,  ast— oo, (B.5)

for all 6 € ©3(k3) (pointwise). As within O3(k3), U44+1(0) is stationary and ergodic, it follows by
(B.5) that the WLLN for stationary and ergodic processes carries over from 0441(0) to vi11(0)

Q(y,0) = Qy,0) + 0,(1) 2= B(52(9)), as n — oo. (B.6)

(B.6) can be generalized to uniform convergence by showing that a WLLN also holds for the
supremum of the absolute gradient, which yields (B.4). From (B.3) and (B.4), theorem 4.1 follows.
In the proofs, let z(;) denote the j-th entry of some vector z, and let Z; ;) denote the (7, j)-th entry

(i.e. the entry in row ¢ and column j) for some matrix Z.

Convergence on O3(k3) and proof of (B.4) and (B.6) I begin with the case § € O3(k3) =
Ds(k3) x ¥, x @ where v(6) is asymptotically stationary. To prove (B.5), I first show that

t
Te1(0) —vera(0) = > 75(6, <5t+1 id )—5t+1—j(d))
7=0

+ Z 75(0)&r+1-5( "‘Z 1(0,1)) €1 (d) (B.7)

Jj=t+1 ]=0

o
Z¢n7] 9 t 7775+1 -7 + Cbej 9 t)€t+1 —js

j=
where ¢y, ;(60,1) is O((1+log(t+1))?(t+1)max(=d+do,~O=1) for j < ¢, and O((1+log )3 jrax(—d+do,~O)=1)

for j > t, whereas ¢ ;(0,t) is O((1 + log(t + 1))2(t + 1)™>*(=4=O=1) for j < ¢, and O((1 +
1Ogj)4 ‘max(—d,—(¢)—1

(B.7) separately. For the first term, plugging in &(d) = Ad dop, + Adcy, &(d) = Addop, 4 Adg,

) for j > t. This can be verified by considering the three different terms in
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yields

t 00 00
> (6,1 (gt—&-l—j(d) - €t+1—j(d)) = > GO i+ D> brei(0. ey, (BS)
=0

j=t+1 Jj=t+1

where ¢, ;(0,t) = 31 _o Th(0, )7 _x(d—do), and ¢1 ¢ (0, 1) = S h_o (0, 1) 2] it a;(po)mj—k—1(d).
Using Johansen and Nielsen (2010, lemma B.4), who show Zizll fmax(=d,—C)— 1( — k)dtdo—1 <
K(1 + log j)jmax(=d+do,=0)=1 for some finite constant K > 0, together with assumption 3, (D.1),
lemma D.2, and j > t, the coefficients in (B.8) are ¢1,; = O((1 + log j)2jmax(=d+do,—¢)=1) " and
$1.c0 = O((1 + log j)?jmex(=d=0=1),

Next, consider the second term in (B.7)

o0 [e.o] [e.9]

Y 08 (d) = Y mriiban (0.8 + Y e jdaei(6,1), (B.9)

j=t+1 j=t+1 j=t+1

with ¢o.¢(0,1) = 920 Tee11k(0) 120" ai(o)mj—i-1-k-1(d) = O((1 + log j)3jmex(=4=01),
and ¢o,(0,t) = Zy & lwk(d — do)Tj—k(0) = O((1 + log j)?j jmax(—d+do,~C)=1) 1y assumption 3,
lemma D.1 and lemma D.2.

For the third term in (B.7), by lemma D.3

t o0 min(j,t) o0
Y (@0) =m0, 0) &g (@d) = =Y 1y >, mk(d—do) Y Trm(6)
Jj=0 j=0 k=0 m=t+1
oo min(jvt) o0 ]—k
- Z €1+1—j Z ( Z Tr,k,m(9)> Zal(wo)ﬂjfk—l(d) (B.10)
7=0 k=0 m=t+1 =

o0
2525377,3 (0, )m+1-5 +Z¢3,e,y (0,t)ett1—;-
7=0 7=0

By lemma D.3, Y °_ 41 Trrm(0) = O((1 4+ log(t + 1))2(t + 1)max(=d=O=1) " while 7;(d — dy) =
O(j~4*+d~1) and Zl 0 al(goo)ﬂ] p_i(d) = O((1 + log(j — k))(j — k)max(=d=O=1) "see lemma D.1
together with Johansen and Nielsen (2010, lemma B.4). Thus, for j < ¢, it holds that ¢3, ;(6,t) =
— Zgl:i%(j’t) (i1 rkm(0)) Tk (d — do) is O ((1 + log(t + 1))*(t + 1ymax(=d+do,=0)=1) 'wwhereas
for j > titis O ((1 +logj)?’jmax(_d*do’_@_l). Similarly, for j < ¢, the coefficient ¢3¢ ;(0,t) =
PR (00 P (0)) S8 an(po)mj——a(d) s O (1 +log(t + 1))%(t + 1)™><(=4=9O=1) and
for j > titis O ((1+ logj)4jmax(*d’*<)*1). Together, (B.8), (B.9), (B.10) and the rates established
below prove (B.7).
(B.5) can be proven by noting that 0;41(f) is stationary and ergodic, so that a WLLN for

stationary and ergodic processes applies. Thus, it is sufficient to consider

E[(0e41(0)—ves1(0))%] = Y [605(0, ) B(7 1) + 6256, 8) E(ef 1)
j=1
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t
=Y 0 ( (14log(t + 1)*(t + 1)2ma><<—d+do7—<>—2>
j=1

+ ) o( 1+ log t+1))8(t+1)2ma"(_d+d07_0_2) = o(1),
Jj=t+1

where the first equality follows by assumption 1, while the second follows from the convergence rates
of ¢y j(0,t), ¢ ;(0,t) as derived above, and the third equality follows from ¢ > 0 and d—do+1/2 >
kg > 0 for all 0 € O3(k3). (B.5) follows directly. From the law of large numbers for stationary and
ergodic processes, (B.6) follows immediately.

(B.6) can be generalized to uniform convergence in probability by showing the supremum of the
absolute gradient to be bounded in probability for all 8 € @(k3) and any k3, see Newey (1991, cor.
2.2) and Wooldridge (1994, th. 4.2). Then (B.4) holds, so that the objective function satisfies a
UWLLN within the stationary region of the parameter space ©3(r3). The gradient of the objective

function is given by

0Q(y,0) 2 vy ()
— v (6 ,
80([) n =1 t( ) 89(1)
v (0) <= 97;(0,1) = 9&—;(d) (B.11)
Ut Ti\0, t—j
= —— 2 (d)+ (0, 1) ———=,

where ;) denotes the I-th parameter in 6. Now, denote 7;(L,0) = > 22, 7 ; (6)L7 as any polynomial
satisfying » 22 |7;,5(0)] < 0o, i = 1,2, uniformly in 6 € ©. Then, for 21+(0) = n:, 224(0) = €, and
for the set é{(dl,dg,l/, @) EDXDxX,x®:min(d; +1,dy + 1,dy +ds + 1) > a}, it holds that

AL &
8d’“ Zsz Zzt m

sup
(dl 7d27V 50)69

6dl ZTJW )Zj,t—m(0)

n

(B.12)
Op(l) for a > 0,

Op((logn)1HE+ln=a)  for a <0,

i,7 =1,2, k,l =1,2,..., as shown by Nielsen (2015, lemma B.3). Now, note that by lemmas D.2
and D.4 both the coefficients 7;(6,t) and their partial derivatives satisfy the absolute summabil-
ity condition, i.e. Z;j) |7;(6,t)| < oo and Z;’;%J |07;(0,1)/00()| < oo for all 0y and uniformly in
0 € ©. In addition, by assumption 3, the absolute summability condition also holds for the poly-
nomials ZJ OTJ (0,t)L7a(L, o) and Ztil a7j(0,t)/(90)) L7 a(L, ¢o). Furthermore note that the
(truncated) fractional difference operator and the (truncated) polynomials Z 7'] (0,t)L7 as well
as their partial derivatives can be interchanged, e.g. A% Z] 070, t)—; = Zj OTJ 0,6)ALn;_;,
as the sum is bounded at ¢ — 1. Finally, for 6 € O3(k3), it holds that d — dy > —1/2, so that within
v¢(0) the term Ai_dont is integrated of order smaller 1/2, and the same holds for the partial deriva-
tive 9&;(d)/0d = (6Ajl__d°/8d)m + (A% /dd)c;. Thus, all terms in (B.11) satisfy the conditions
for (B.12) with @ > 0. By (B.12), it follows that supgcg, x,) %) = Op(1) for all entries in 6.

89@)
Hence, (B.6) holds uniformly in 6 € @3(k3). As this holds for any kg3, this proves (B.4).
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Convergence on O2(k1,k2) Next, consider the case § € Os(k1, k2) = Da(k1, k2) X X, X . Then
for the objective function in (16), together with (15), it holds that

n t—1 n t—1
1 1 2
Q.0 =- > |Y 006 (@] == (AT Y 70 0niy)
t=1 | j=0 t=1 =0 (B.13)
9 n t—1 t—1
+ ﬁ <Ajl—_d0 Tj (9, t)ﬁtfj) (Ai Tj (9’ t)ct,]) ’
t=1 7=0 7=0

where the fractional difference operator and the polynomial Z;;t 7;(6, t)L7 can be interchanged as
the latter is truncated at ¢ — 1.

For the second term in (B.13), by lemma D.2 Z;;B |7;(6,t)] < oo , and by assumption 3 and
lemma D.2 322, me(]t b |7;(6,t)ar—;(po)| < co . Furthermore, as d > 0, d —dp > —1/2 — kg >
—1, it holds that min(1 +d —do,1 +d,1+2d —dp) =1+ d — dp > 0, so that by (B.12)

n t—1 1

1 _
sup =) AT 0.y | (ALY 70, )er—; || = Op(1). (B.14)
96@2(/@2,%3) n =1 j=0 j

-
I

Il
=)

Next, consider the first term in (B.13), for which one has by lemma D.3

t—1 t—1 t—1 00
ATPN "m0, ) = AT (0 + AT ( > TT7j,i(0)> Ni—j

j=0 j=0 j=1 \i=t+1
= AT " mi(0)mj + 1y (6), (B.15)
j=0
where
Tn’t((g) = —Aiﬁdo Z (9 MNt— —j + Ad Znt —j Z 7"7—,]"1‘(9) = Aiﬁdo Z()éjnt_j, (B16)
j=t i=t+1 j=1

and o = Y7, 7754(0) for j <t and o = —7;(0) for j > t. By lemmas D.2 and D.3, 7;(6) =
O((1+logj)j jmax(— d’_o_l) and Y72, 4 rrji(0) = O((1+1log t)ztmax(_d’_o_l), so that aj = O((1+
log t)2tmax(—d,— O_l) for j <tand a; = O((1+logj)jmax(_d’_<)_1) for j > t. Apply the Beveridge-

Nelson decomposition to 7, :(6)

oo oo (0]
ra(0) = AT > o+ AT Yy, ol =Y (B.17)
j=1 j=1 i=j+1

where Z]Oil a; = O((1 + log t)2tmax(=d:=0)  Again, by the Beveridge-Nelson decomposition for
AT S 7i(0)me— in (B.15)

MY Oy = AL Y )+ ALY SO, (B
§=0 §=0 J=0

42



where 77(0) = —> 2., 7(0), and > 72 7;(0) = O(1) by lemma D.2. By (B.15), (B.17), and

(B.18), it follows for the first term in (B.13) that

t—1 n 00
IS (AT ) = S (At > w(0) (B.19)
=1 =0 t=1 =0
+2 (Ai‘dOm S (AT Y o)) (B.20)
t=1 | =0 j=1
F23 | (ad g S ) (AL DS m) (3.21)
=1 | =0 j=0
+ % (Aiﬁdom Z T; (9)) (AiﬁdOH Z a;nt_j> (B.22)
=1 | j=0 j=1
+ % (Ai—doﬂ S (a)m_j) (Ai—dom_l 3 aj> (B.23)
=1 | j=0 j=1
+ % (Ai—doﬂ 3 T;(a)nt_j) (Ai—d()“ 3 a;nt_j) (B.24)
t=1 | j=0 j=1
+ % (Aiﬁdont,l Z aj> (AiﬁdOH Z a;nt,j) . (B.25)
t=1 | j=1 j=1

From (B.12), it immediately follows that (B.21) to (B.25) are O,(1), as d —dp +1 > 0 and
d—dy > —1 for all 0 € Oz(k2,k3). In addition, as 3772, a; = O((1 + log t)2tmax(=4=C)) and
as Z;io 7;(6) is bounded away from zero by assumption 3, it follows that (B.19) asymptotically
dominates (B.20), so that the rate of convergence of (B.13) will depend solely on (B.19). The
asymptotic probability limit of the first term (B.19) is derived analogously to Nielsen (2015, pp.
163f) by defining w, = S0 o' mi(d — do)ne—; > ieo7(0) and up = SN mi(d — do)ne— i 25207 (0)
for some N > 1 to be determined. Then Ai_dom > 720 Tj(0) = we + uy, and it holds for (B.19)

n o0 n
%Z (Aflfdont ZTj(g))2 > % Z (th + Zwtut) . (B.26)
=1 =0

t=N+1

As shown by Nielsen (2015, p. 164), for some k satisfying max(ke, k3) < k < 1/2, setting N = n®

with 0 < a < min Gg;g, l/é/f%) , it holds by Nielsen (2015, eqn. B.4 in lemma B.2) that

TS e Wit 25 0 uniformly in 6 € Oy(k, k) D Oa(ka, k3). As also shown by Nielsen (2015,
p. 164), the other term in (B.26) satisfies

sup Z wt—a <§:Tj > Z (d — do)| 2= 0, (B.27)
7=0

0€O2(k,k) t no41

as n — oo, and by Nielsen (2015, lemma A.3) the latter sum is bounded from below by E; ot 75 2(d—
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do) > 1+ KM for some K > 0. The limit of the fraction W

T is discussed by

Nielsen (2015, p. 165): It increases in n from zero (for n = 2) to 1/(2k3) as n — oo, and decreases
in k3 from alog(n — 1) for k3 = 0 to zero for k3 — 1/2. Consequently W
(n,k3) — (00,0). This, together with (B.19), (B.26), and (B.27) yields that the lower bound of
%Z?Zl(Ai_dO Z;;%) 7i(0,t)n:—;)? diverges in probability for 6 € Os(k, k) as (n,k) — (00,0). By
(B.13), (B.14), and (B.15) the result of Nielsen (2015, eqn. 25) for ARFIMA models carries over
to the fractional UC model: For any K > 0, § > 0, there exist K3 > 0 and 715 > 1 such that

— OO as

Pr < inf Q(y,0) > K) >1—-¢6, forallT >T, (B.28)
de€D3(k2,R3),VEL, 0ED

and (B.28) holds for any ks € (0,1/2).
Convergence on ©1(x1) Finally, consider the non-stationary subset ©1(k1) = D1 (k1) X X)) X .

Starting again with (B.13) above, the second term in (B.13), by the same argument with respect

to absolute summability of the coefficients as for (B.14), is now

n t—1 t—1
% 3 (Ai—do (6, t)m_j) (Ai A t)ct_j) -0, (1 + 1og(n)nd0*d*1) , (B.29)
t=1 j=0 j=0

for all 6 € ©;(k1) by (B.12) with di = d — dy, d2 = d, and thus is O,(1) for d — dyp > —1 and
O,p(log(n)n@=4=1) otherwise. As will be shown, the first term in (B.13) will asymptotically diverge
at a faster rate compared to the second term above. To see this, note that the decomposition of the
first term in (B.13) into Aiﬁdo > 720 Tj(0)m—; and 7 4(0) in (B.15) and (B.16) above also applies
in ©;(k1). Consequently, the Beveridge-Nelson decompositions in (B.17) and (B.18) also hold for
0 € ©1(k1). Again, the decomposition in (B.19) to (B.25) applies, however the terms in (B.21) to
(B.25) will not necessarily be O, (1), since d — dy is no longer bounded from above by —1 or by —2.
However, as will become clear, the first term (B.19) asymptotically dominates all other terms in
(B.20) to (B.25) and thus it will be sufficient to consider only this term.

To arrive at the desired result, consider n?(@—do) Z?Zl(Aifdo M D im0 Ti (6))?, a scaled version of
(B.19). It follows from the Cauchy-Schwarz inequality that

d—do, N 2 — \d—do N 2
(A, 3" 1(0)) = (01230 Ao, Y 6), (B.30)

j=0 t=1 §=0

n? (d—do)

n

t=1 j=

d—do—1/2 ig required for a functional central limit theorem later to hold.

where the scaling by n
The remaining proof for § € ©1(k1) follows Nielsen (2015, pp. 168f) and shows his results for
the CSS estimator for ARFIMA processes to carry over to the fractional UC model. As also shown

there, from Hosoya (2005, thm. 2) a functional central limit theorem for

rn(0) = n® 02N AT N () = R 2AT O N, N " r(0) (B.31)
t=1 j=0 j=0
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follows if assumptions A(i) to A(iv) of Hosoya (2005) hold. Since 0 < 3772 |7;(0)| < oo and
E(nj|F:) = 0 for all j > t, as well as E(n;nx|F:) — E(njn,) = 0 for j,k > t by assumption 1, it
follows that assumptions A(i) and A(ii) of Hosoya (2005) are satisfied. By Hosoya (2005, lemma
3), assumption A(iii) of Hosoya (2005) is satisfied if n; is a fourth-order stationary process with
a bounded fourth-order cumulant spectral density, which is satisfied by assumption 1. Finally, by
Hosoya (2005, thm. 3) the respective assumption A(iv) is satisfied for the fourth-order stationary
process 7; if 2 > (2(dg — d + 1) — 1)~! holds, which is equivalent to dy — d > —1/4 and is satisfied
for all 6 € O©1(k1). By Hosoya (2005, thm. 2), as n — oo

nd—d0—1/2Acifdoflan"J 27-].(9) = Wyy—a(r) in DI[0,1], (B.32)
=0

for r € [0,1] and fixed d € D;(k1), where |nr| is the greatest integer smaller or equal to nr,
Wig—a(r) =T(do —d+1)7" [ (r — s)%~4dW(s) is fractional Brownian motion of type II, and W
denotes Brownian motion generated by 1 > 272 7;(0). (B.32) is equivalent to Nielsen (2015, eqn. 30)
for the univariate case. From (B.32) it follows that r,(6) N r(0) = Way—a(1) for fixed d € Dy (k7).
Pointwise convergence r,(f) can be generalized to uniform convergence in D1 (k1) if 7,(6) is tight
(stochastically equicontinuous) as a function of § on # € ©;(k;). Since the parameters ¢, v only
enter r,,(0) through > 22 7;(0), it is sufficient for tightness of 7,,(9) in 6 that nd*dofl/QAfdoflnn
is tight in (d — dp). As in Nielsen (2015, pp. 169f), tightness in (d — dp) can be shown using
the moment condition in Billingsley (1968, thm. 12.3) which requires to show that r,(6) is tight
for a fixed d — dyp and that ]ndl_l/QAil_lnn - ndQ—l/zA‘ff_lnn] < K|dy — ds] for some constant
K > 0 that does not depend on n, di, or da, see Nielsen (2015, pp. 169f). As noted there, the
first condition is implied by pointwise convergence in probability and distribution, while the second
condition holds by Nielsen (2015, lemma B.1). Consequently, r,(6) = r(6) in d € D1(k1), and thus
infgeo, () n(0)? 5 infpeq, (uy) m(0)2.

Coming back to the first term of the objective function (B.13), for which a lower bound is given
by the expressions (B.19) to (B.25), note that by (B.30) the first term (B.19) is bounded from
below (when scaled appropriately) by

1

n 0o )
inf = Ad—do (0 > p2do—d=1/2) ¢ (0 2 B a3
ee(gll(m) n ; ( + ij::oT]( )) zn eegll(m) r ( ) ( )

The probability limits of (B.21) to (B.25) can be derived by (B.12) for dy = d—dp and d2 = d—dp+1,
and equal O, (1 +n"%logn), where a = min(1 +d — dp,2 + 2(d — dp)). Thus, a = 1+ d — dy if
d—do > —1,and a = 24+2(d—dp) if d—dp < —1. In the former case, a > 0, so that (B.21) to (B.25)
are Op(1). In the latter case, they are O, (nQ(dO_d_l) log n) and thus diverge at a slower rate than
(B.19). For (B.20), note that 3 7%, a; = O((1 + log t)2pmax(=d:=0))  while > 720 7j(0) is bounded
away from zero by assumption 3. Consequently, (B.20) will also diverge at a slower rate than (B.19).
Finally, as already shown in (B.29), the second term in (B.13) is O, (1 4 log(n)n®~9"1) and thus
is also dominated by (B.19). It follows that the rate of divergence of the objective function is
determined by the first term in (B.13) and is given by the divergence rate of (B.19). This, together
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with (B.33), yields

inf ,0) > n2 I/ i e (0)2 > 0 inf o (6)° B.34
66(3}(51)@(2/ )_ " HEé?(m)r ( ) " GEé)rll(Hl)r ( ) ( )

as n — o0o. Thus, one obtains the result of Nielsen (2015, eqn. 34) that for any K > 0 and all
k1 >0

Pr ( inf —Q(y, 0) > ) —1, asT — oo. (B.35)
de D1 (

K1), VEX,,pEP N

Together, (B.28) and (B.35) prove (B.3). O

C Proof of theorem 4.2

Proof of theorem 4.2. Since g is consistent, see theorem 4.1, the asymptotic distribution theory can

be derived based on the Taylor series expansion of the score function as usual

0= yn2QWw.0)

_ ~0Q(y,0)
90 = 90

0=0

N \/58262(%0)

0000’ i (é B 90) ’ (C.1)

6=06q

where for the entries of § it holds that |0, — Oo;y| < \é(i) — Oo;| for all i = 1,..,q+ 2. The

normalized score at 6 is

n

. 2 8'Ut(0)
= T 2o g

0Q(y,0)
v Vi &

- , (C.2)

0=0o

0=0o

with v(6) denoting the prediction error as defined in (14) and (15), and its partial derivative as

given in (B.11). Denote the normalized, untruncated score

\/5852(:% 0)

- , (C.3)

0=09

0=0o

with () as defined in (B.2). Asshown in lemma D.6, the difference between truncated and untrun-
cated score is asymptotically negligible. Therefore it is sufficient to consider the distribution of the
latter. By assumption 5, the untruncated prediction error v;(p) is a stationary MDS when adapted
to ]-'té = 0(£s, 5 < t). Thus, for (C.3) a central limit theorem can be shown to apply following Nielsen
(2015, p. 175): By the Cramér-Wold device it is sufficient to show that for any g + 2-dimensional

0 0) 0 ,0 n o~ 7
vector p, p'\/n=5a Qy ‘9 0 = \quH () ( Q(y )’9 9(])() = lZ;HfN(z > i1 0¢(6o)(h1e +
00 87'] 9)

i1 f’t_j(do), as well as hyy =

iLg,t)(i) LN N(0, 407 o/ 20) as n — oo, with his = 30

oo dé—;(d
S5m0 5|

. As hlt and hgt are ]:t ;-measurable, vy = Z;ﬁf,u vt(Gg)(hlt + hgt)(l)

together with ]:f is a MDS. Thus, by the law of large numbers for stationary and ergodic processes,
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it holds that

1 n 5 n q+2
gZE(Vﬂff—l) = Z > wyniono(hag + hog) i (e + hag) gy
t=1 t 14,5=1
q+2 L& q+2
= Z ,Ua(i),u(j)o—ioa Z(hl ¢+ ho ) )(h1 ¢+ hy £)0) s o2 0 Z 1y oG ) »
ij=1 t=1 ij=1
. ~ 3 ~ th 81} .
with o2, = E(v?(@o)\FE_l) = E(3%(0)), and Qo,,) = E [ 0., ‘9 6o 8(30) ‘9 6] Finally, the

8Q(y,

Lindeberg criterion is satisfied as 0;(fp) is stationary. It follows directly that /n

9Q(y,9) d
V20| 0p(1) <L N(0, 402 0).
Next consider the second derivatives in (C.1). By Johansen and Nielsen (2010, lemma A.3),

‘9 90:

the Hessian matrix in (C.1) can be evaluated at the true parameters 6 if 6 is consistent and if the
second derivatives are tight (stochastically equicontinuous). As also discussed by Nielsen (2015) for
the CSS estimator of ARFIMA models, tightness holds for the second derivatives if its derivatives
are uniformly dominated in d € D3 as defined in the proof of theorem 4.1, v € X, as defined in
section 4, and ¢ € Nj(¢o) as defined in assumptions 2 and 4, by a random variable B,, = O,(1),
see Newey (1991, cor. 2.2). This holds by lemma D.7. Therefore, the second derivative in (C.1)

can be evaluated at the true value 6,

Z 8’0,5

k,l=1,2,...,g+ 2. By lemma D.8, as t — o0,

9%Q(y,0)

By (0)
—0, 89(1)

. (C4)
6=0o

2 " 821),5(0)
+ = w(bo) =
—0, n ; 89(@89([)

E

00 00 04’ o0y’

(a@t(e) - 8vt(9)) ' <a@t(9) - aut(9)>

] 0.
0=0o
From the law of large numbers for stationary and ergodic processes, it then holds for the first

term in (C.4) that 2 Y1, 8“ 0) algg, =1y avt &ge(,e) + 0p(1). In addition, by lemma D.9
the second term in (C.4) is *Zt lvt(eo)aagége,)b b0 = 25 1@(00)8853(;) o—g, T op(1). As

(0¢(0p), .7-"5) is a stationary MDS, while the second partial derivatives are ff ;-measurable, it holds
that 237, vt(OO)%gig(;,}) = 0p(1). Taken together, this implies for (C.4) that

6=09
*Q(y, ) dv(0 0vy(0)
) +0,(1). (C.5)
M0 |, Z aa(k o P |y

Finally, from the law of large numbers, it follows that 39(% gei)

(C.1) for \/n( — 0p) yields the desired result

5 _ [2Qw,0] ~0Q,0)
\/5(9_9“)__[ 8000’ Le\/ﬁ 0"

P .
|9 —oy QQO(M). Thus, solving

4 N(0, 02,405 ).
0=0q
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D Additional lemmas

In what follows, let z(;) denote the j-th entry for some vector z, and let Z; ;) denote the (i, j)-th

entry (i.e. the entry in row ¢ and column j) for some matrix Z.

Lemma D.1 (Convergence rates of mj(d), bj(¢), and related vector and matrix entries). It holds
that

mi(d) = 01, (D.1)
bi(p) = O, D.2)
O . _ . _C_l . .’
(BLtBot)ig) = { F= gy Jori g (D.3)
0(1) fori=j,
O . _ . _d_l . .7
(Sh:500) ) = { (T gy dori 2 (D.4)
0(1) fori=j,
) Oli=jI=¢71) fori#
B .B,,) L = D.5
( Pyt @:t)(z,]) {O(l) fo’/”i _ j’ ( )
e O([i — jmxCh=O=1) - for i # j,
(Bg,t Byt + I/Sd7tSd7t)(7;,1j) = {O(l) fori=; (D.6)
(BL.B)g) =O((t —j+1)7¢71), (D.7)
(Shst)g) = O((t—j+1)7%71), (D.8)

with 7;(d) as defined in (3), bj(¢) as defined below assumption 3, B,y and Sq; as defined in (5),
and B = (b(p) -+~ b1()), st = (mi(d) - - - m1(d)).

Proof of Lemma D.1. (D.1) follows by Johansen and Nielsen (2010, lemma B.3) while (D.2) follows

by assumption 3. (D.3) follows from (D.2) by (B, ;By.t) (i j) = gi%(i’j)_l b (¢)bg1ji—j (0) = O(]i—

I ZRE T k() = O(i = 4176 for i # j, and (B m(” Xizqbi(e) = O(1). The

proof for (D.4) is analogous and follows from (D.1), as (S} Sy, t) Zznm )= Tk (d) Ty i (d) =
O(Ji — j|=471) for i # j, (Sd,tSd,t)(z,z) = O(1).

To derive the convergence rates for the entries of (B), ;By)~" and (B, ; By, + VS&iSd,t)_l in (D.5)

and (D.6), note that as t — oo, By, ; Byt and B, Byt +vS) Sa converge to the Toeplitz matrices!’

Ty(f1) and Ty(f2) with symbols f1(X) = (2m)" Z] oM™, M) = 370 k(@i (), f2(N) =
(2m) 71 32520 2(5)e™, 12(7) = o520 [k (9)bi5 () + vi(d) ey (d)], where 71(j) = O(j7¢~) and
Yo(j) = O(j™x(=d.=O=1) 35 j — co. Consequently, (pr,tho,t)_l and (pr,tB%t + VS&’tSd’t)_l con-
verge to the Toeplitz matrices T;(1/f1) and T;(1/ f2) that exist by assumption 3. Denote the respec-
tive spectral densities as 1/f1(\) = (27)7* > i203(d)e e and 1/f4(\) = (2m)~! > i2o4(d)e e,

OGray (2006) provides a good overview about the asymptotic behavior of Toeplitz matrices.
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Then the convergence rate of v3(j) can be obtained from the partial derivative (9/9\)[1/f1(\)] =

(2m) 7t 5 igvs(d)e™N = — 1N T2 (2m) T 72 i (F)e™, where jyi(f) = O(j7¢), so that j3(j) =
O(57¢) as f1()\) is bounded away from zero by assumption 3. It follows that v3(j) = O(;¢~1).

jmax(—d,—~()~ D). As the j-th descending diagonals of

Similarly, it can be shown that v4(j) = O(j
(B, By)~" and (Bl Bot +vSg Sa, ¢+)~! converge to y3(j) and v4(j) as t — oo, one has (D.5) and
(D.6).

(D.7) follows immediately from (D.2), since (B, ;5;)(;) = Z?C;B bi(@)br—jyrt1(@) = O((t — 5 +
1= h Zf;é br(p) = O((t—j+1)=¢~1), while (D. 8) follows immediately from (D.1) by (S ;s¢41) () =

hmo ()T (d) = O((t = j + 1)) Y Zgme(d) = O((¢ = j + 1)), m

Lemma D.2 (Convergence rates of 7;(6,t)). For the coefficients 7;(0,t) as defined in (15) and
below, it holds that

7(6,t) = 0 ((1 n logj)jmax(_d’_c)_1> . (D.9)

Proof of Lemma D.2. To prove (D.9), consider 7;(6,t) as defined in (15) and below

yzt: [ ( —mi(d) - b)) — ﬂ't(d)) (B:o,thp,t + l/ScllvtSd,t)*l}
k=1

(k)Sd’t(j,kV (D.10)

The left term in (D.10) is

[(b1(0) ~mi(d) - bu(@) — m(d)) (Bl B +vShSar) ']

= (b() = () (Bl Boyt + vShSar) i

(k)

k—1
+ > (bilp) = mid)) (Bl Beyt + vSgiSae) i (D.11)
i=1

t
+ (bi(0) = mi(d)) (Bl 1Byt + v S15a,) .-
i=k+1

Note that mi(d) = O(k~971), be(p) = O(k=¢71), (pr,tB@,t‘i'VS[Ii,tSd,t)(_kl’k) = O(1), and (B, ; Byt +
v}, Sa) gy = Oli = k[**4=071) for i # k by (D.1), (D.2), and (D.6). Thus, the first term in
(D.11)is O (kmax(_d’_g)_l), while the second term is Zf;ll 0 (imaX(_d’_C)_l(k j)max(= d’_g)_l) =
O ((1 + log k)kmax(*d’*g)*l), where the last equality follows from Johansen and Nielsen (2010,
lemma B.4), who show that SF— 1 jmax(=d—O-1(f _ jymax(=d—~0O=1 — O((1 + log k)kmax(=d=O~1),
Analogously, it holds for the third term in (D.11) that Zi:k—i—l (i jmax(=d, =) =1(; _ k:)max(_d’_o_l) =
O((k + 1)max(=d:=O)=1 Z§:k+1(i — kymax(=d=0=1) = O((k + 1)™>*(=d:=0)=1)_ Therefore

() =@ - 0lo) = m@) (Bl Bpa +vS7uSa) ],

k) (D.12)
= 0 ((1+ log k)km(—4=0=1)
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By plugging (D.12) into (D.10) and using (5) together with (D.1), one obtains

(160 = mid) - bu(o) = mild)) (BloaBoa +vSuaS00) " S|

|
ol
i tvjt*
S

[(bl(g@) —m(d) - b)) — ﬁt(d)) (B;,thp,t + VS&,tSd,t)’l} 0 Th—;(d)

t
(1+ logj)jma"(*d’*o”) + O( > (1 +logk)kmex(==O=L () — j)*dfl)

=0
( k=j+1
t—j
= O((l + 10gj)jmax(*d,*()*1> + O((l + logj)jmax(fd,fg)—l Z k7d71>
k=1
= 0 ((1+10g j)jm-4=0=1), (D.13)

since 47 k=41 = O(1) for all d > 0. This proves (D.9).
O

Lemma D.3 (Convergence of 7;(6,t) as t — 00). For the coefficients 7;(6,t) as defined in (15)
and below, it holds that

7i(0,8) = 75(0,t + 1) + rrje41(6), (D.14)

where - j141(0) = O((l +log(t+1))2(t + 1)maX(*d’*Q*1(1 +log(t+1—75))%(t+1 —j)max(*d’*ofl).

Proof of Lemma D.3. To prove (D.14), I study the impact of an increase from ¢ to ¢t +1 on 7;(6,t+
1) = v[(bi(p) = m1(d) -+ bet1 () = Te41(d)) (B 41 Botrr + 1Sy, 18a,e+1) ™ Sy 411 (j)- Denote

Bcp,t 515
let 1

Sd,t St

, (D.15)
let 1

Bgii1 =

) Sd,t+1 = [

with B = (be() b1 () and s = (mo(d) - w1(d))'- Let Zea(8) = (Bl 41 Btr1 -0} 1 Sarn)
Then, by the Sherman-Morrison formula

= 9)4—1%1 Ry
Z.1(0) = A D.16
t+1(0) R, R (D.16)

)

with the block entries

Ry =[(1+ BBt + v +vsyse) — (BiByy + VséSdi)Et(Q)(pr,tﬁt + VSl’i,tst)]’l7
Ry = —R3Z4(0) (B, b + vSy,st),
Rl = Rggt(G)(B(;’tﬁt + I/Sé’tst)(ﬂ,;B%t + usngﬂg)Et(Q).
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Clearly Rs = O(1), since by (D.6), (D.7) and (D.8)

j—1
[( ;sBcp,t + VS;Sd,t)Et(e)](j) = O(Z(t +1— i)max(—d,—o—l(j . Z-)maX(—d,—C)—l)
=1
t—j
+ O((t +1— j)max(—d7—c)—1) + O(Z(t +1—i— j)max(—d,—C)—limax(—d7—§)—1>
=1
= O ((1+log(t 4+ 1= ))(t+1 - jy==x=t=071), (D.17)

and again by (D.7) and (D.8)

(BiBgyt + v5Sa.)Ze(0) (Bl 1B + vSh4st)
t
- O<Z(1 + log(t +1- ]))(t +1- j)max(—d,—c‘)—l(t +1— j)max(—d,—g)_l),
7j=1

which is O(1). This, together with 14 3;5; + v+ vs;s; = Z§'=0 bjz-(ap) +v Zz‘:o 7rj2- (d) = O(1), yields
R;' = O(1). Furthermore, R; "' is bounded away from zero, as Z;(6)~!

For Ry, by (D.17) it follows that Ry, = O ((1+log(t+1— j))(t + 1 — j)m*(=4=0=1) " Finally,
for Ry, by (D.17) it follows that Ry, = O((1 +log(t + 1 — i))(t + 1 — i)m>E=O=1(1 4 Jog(t +
L= )t +1 = gymexa=0=t),

Next, consider the vector

is regular by assumption 3.

(01(p) = m(d) - - - brya () — 7Tt+1(d))(Bclp,t+lB<p,t+1 + I/S&ﬂg_,_lsd,t—&—l)_l
= ((b19) = () bul0) = TU(D)EO) + Ri] + (bes1(9) = o1 ()R Ra),

where Ry = (b1(¢) —m1(d) - - - be(p) —m(d)) Ra+ (be+1(p) —me41(d))Rs. By (D.1) and (D.2), it holds
for the terms in Ry that [byy 1 () —mi1(d)| Rz = O((t4+1)™2x(=d=0=1) "and (by () =1 (d) - - - bs () —
mi(d))Ry = O( Yy jmo¥=h=O= (14 log(t+1— ) (t+1—j)m>x=h=O=1) = O((14log(t+1))(t +
1)max(_d’_o_l). Thus Ry = O((1 + log(t + 1))%(t + 1)max(_d’_o_1). Analogously, for the other
terms in the above vector, one has [(by41(¢) — m41(d))Ry](jy = O((t + 1)max(=d:=0=1(1 4 log(t +
L= )+ 1 )01 and [(b(9) — m1(d) -+ bul) — mld))Ral gy = O((1 + log(t + 1 —
P+ 1= =015 (1 4 log(t 41— i) (¢ + 1 — i)mex(-d-0-1max(-d—0~1) — O((1 +
log(t +1—7))(t+1— jymax(=d=0=1(1 4 log(t 4+ 1))%(t + 1)max(_d7_o_1). Therefore, for j = 1,...,t,
the whole term 7;(6,¢+ 1) is

(0,64 1) = v (01(9) = (@) bulo) = m(d)EO)Sy, + BE) | = T5(0.0) + vRs,, (D.18)

J

where Rg = [bi11(p) — me1(d)]R5Sg , + Rasy + (bi(p) — m1(d) - - - be(p) — me(d)) R1Sg . For Rs

t t—j
[RSalG) = Z Raymiej(d) = R, + Z Ry, mild)
i=j i=1

= O((1+1log(t + 1= ))(t+ 1 — jym==t=071)
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t—

+ O((l +log(t+1— g)) (t+1—i— j)maX(—d,—c)—li—d—l)
1

.

-
Il

=0 ((1+1og(t + 1 - j))2(t+1— jymax-a=9-1),
so that [(by41(0)—mi41(d)) RS, ] () = O((t41)*CE=0= (1 4log (t41—5))? (t41—j)ymexA=0=1),
while [Ry4s}] G) = ( (1 + log(t + 1)) (t + 1)max(*d,*C)*1(t +1— j)fdfl)_ Furthermore

[(b1() = m1(d) -+ be(p) — e(d)) R1S ) ) = Z[(bl(@ —mi(d) -+ bi(p) — mi(d)) B (3ymi—j(d)

=[(b1(p) — m1(d) -+ by (0) — m(d) Ral gy + 3 [(ba(0) — m1(d) -« bi() — mo(d)) Ra iy ()
:O((l + log(t + 1))2(t + 1)—min(d,C)*1(1 + log(t +1-— ])) (t +1— ) min(d,()— )

Hence, Rs ;) = O((1 +log(t + 1))2(t + 1)max(=d=0=1(1 4 log(t + 1 — 5))2(t + 1 — j)max(=d=0O=1),
This completes the proof of (D.14).
O

Lemma D.4 (Convergence rates for partial derivatives of 7;(6,t)). For the partial derivatives of
the coefficients 7j(0,t), as defined in (15) and below, it holds that

8Tj(97t) _ \4 max(—d,—¢)—1
90 @) ((1 +logj)%j ) , (D.19)
87—](9 t) 3 max(—d,—({)—1
5 =0 <(1 +logj)’j ) , (D.20)
8@(0,15) N3 - —d.—)—
220 —0((1+1o max(=d,=¢)—1) D.21
o <( 87)"j ) (D.21)

where ¢y denotes the l-th entry of ¢, I =1,...,q

Proof of Lemma D.4. Denote 7;(d) = dm;(d)/0d = O((1 + logj)j~%"'), see Johansen and Nielsen
(2010, lemma B.3), and Bj(cp(l)) = 0bj(p)/0pq) = O(j~¢~1) by assumption 3. Furthermore, denote

the partial derivatives of Sq; and B, ; as

0 m(d) -+ w-1(d) 0 bi(pg) -+ be-1(pw)
_0Sqy |0 0 oo To(d) 5 _9Bpy _ 0 0 s ba(p)
B T T R A S S
0 0 0 0 0 0

and note that [S&7t5d,t](1,j) =0 forall j =1,...,t, while for 1 < <t it holds that

Y = — )= ifi <j
50 }){ L (@) (d) = O((L+ G — 1) ~D) AT

1o m(d)iksi(d) = O((1 +log(i — /) (i — 5)~*71) it i >
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Similarly, [B:o(l),tB%t](l,j) =0 for all j =1,...,¢, while for 1 < i <t one has

i—1 7 . N — op - .
. b bprici(@) =0((1+j—4)~1) ifi<j,
B B = {zkl P0)bssalp) = O +G =) i<y

2 ) ) ; . N . . .
v S (@) brrimj () = O((i — 5) =471 if i > j.

In addition, denote Z4(0) = (B, ; By + vS),S541)"" to simplify the notation. Starting with the
partial derivatives 07;(6,t)/0d, one has

or;(0,t — . C—
00 2 ((bile) — mild) - bul9) — meld)  ZO)(SheSar + i) ZO)Sh)

+[(b1() = mi(d) -+ bl ) — me(d))Ee(0) 7l ) — vI(71(d) -+ e (d))Ee(0) ol 5)-

(D.24)

For the first term, note that by (D.22) [S’Zlisd,t + S&,tsd’t](i’j) = [Sél’tsd,t](i’j) + [Sél,tsdi](j,i) =
O((1 +1log i — j[)|i — 4| ~4=1) for i # j, and [S},Sas + S, Satl(i) = O(1). Together with (D.12) it
follows for the first terms in (D.24) that

[(b1(p) — mi(d) - - be(p) — me(d))Ze(0)(ShSar + Si.45ae)] ()

j—1
=0 (1 +10g /)" C4=971) £ O 30 (1 +1og )™= 1(1 4 log(j — ))(j — )"
=1
t
+0( 2 (1 +1logi)im™=071(1 1 log(i — ) (i — )~
i=j+1
=0 ((1 + logj)?’jmax(_d’_o_l) , (D.25)

where for the last equality, note that the second term satisfies Zg;ll jmax(=d—Q=1(j _ jy=d=1 —
@) ((1 + logj)jmax(_d’_g)_l), see Johansen and Nielsen (2010, lemma B.4), and that it dominates
the first and third term above. Taking into account the next product term for the first term in

(D.24), by (D.6) and (D.25)

(b1 () = m1(d) - bi(p) — me(d))E4(0) (ShpSat + SieSa) e (0)] )
j—1

=0((1 + logj)sjma"(’d’*)*l) + O(Z(l + log)3imax(-d—O-1(; _ Z-)max<—d,—<)71>
=1

t
+ O( Z (1 + logi)3imax(=d=O=1(; _j)max(—d,—g)_1)
i=j+1

=0 ((1 + logj)‘*jmax(’d”o’l) , (D.26)

where the proof is the same as for (D.25) besides the additional log-factor. Adding the last term,
it follows by (D.1) and (D.26) that

[(b1(p) — mi(d) - - be(p) — me(d))Ze(0) (S Sar + Sh.4Sa2)Ze(0)Sh ) )
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= Z[(bl(w) —m1(d) - be() — mi(d)Ze(0) (S Sae + Sl pSae)Ee(0)] iymis(d)

i=]
t
- O((l n logj)4jmax(_d’_0_l> n O( 37 (1 + logi)mex-h=0-1(; _ j)—d—1>
i=j+1
~0 ((1 n 1ogj)4jmax(*d»*0*1> , (D.27)

where the second equality uses mp(d) = 1 to obtain the first term, while the last equality uses
Zf;{ i~%~1 = O(1), which holds for all d > 0. Consequently, the first term in (D.24) is bounded
by O ((1+ logj)4jmax(_d’_4)_1). Turning to the second term in (D.24), by (D.12)

[(b1(p) — mi(d) - - by (ip) — me(d))Ze(0) Sl ] )

= Y [(0il) = mi(d) - bilp) — () Z4(0)) 3y iy (d)

i=j+1
t
- O( 3 (14 log )i CE=O1(1 4 log(i — 4)) (i — j)—d—l)
i=j+1
=0 ((1 + logj)jm“(’d”o’1> : (D.28)
where the last equality follows from Zf;{(l +logi)i~@1 = O(1) for all d > 0. By an analogous

proof, the third term in (D.24) is

t

[(7e1(d) - - -0 (d))Ee(8) Sl gy = D [(1(d) - - e (d))Ze(8)] iy mi—5 ()

=]
t
=0((1+10g)/">C401) 4 O 37 (1 +log )24 (1 1 log(i — 7)) (i — j) ')
i=j+1
=0 ((1 + logj)zjma"(‘d"C)‘l> : (D.29)

Together, (D.27), (D.28), and (D.29) yield (D.19).
To prove (D.20), consider the partial derivatives 07;(0,t)/0v, for which

o1 (0,1)
ov

= [(b1(p) — mi(d) - - - b () — me(d))Z4(0)Sg 4] () (D.30)
—v[(bi(p) = mi(d) - - be(p) — me(d))Z4(0)S5,154,4Z¢(0) S el () - (D.31)

By (D.13) the first term (D.30) is O((1 + log j)j™*(=%=9~1) while by (D.4) and (D.12), it holds
for the second term (D.31) that

[(b1(p) —m1(d) -~ be(p) — Wt(d))Et(e)Sél,tSd,t](j) = O((l + IOgj)jmaX(fdﬁO*l)

j-1 t
+ 0(2(1 +logd)imax(—d=0-1(; _ z’)*d*) + O( 3 (1 4 logi)im b0 - j)*d*)
i=1 i=j+1
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—0 ((1 n 1ogj)2jmax(_d’_o_1> : (D.32)
and the proof is analogous to (D.25) besides one log-factor. Furthermore, by (D.6) and (D.32)

[(b1(9) = 71 (d) - be0) — Tl D) Z4(0)S} SaZe(O)] gy = O((1+log )3t =-0-1)
1

<.
|

+0( Y01 +logimax-a=9-1(j _ jymax(-d=0-1)
=1
t
+ O( D (14 logi)?imax=d=O=1( _j)max(—d,—o—l)
i=j+1

=0 ((1+10g j)? =401, (D.33)

where again the proof is analogous to (D.26) besides one log-factor. From (D.1) and (D.33) it then
follows for (D.31) that

[(b1(p) = m1(d) - - - bi(p) — me(d))Z(0)S5,454.4Z(8) g4 ()

— O((l + logj)?’jmax(’d”O’I) n O( 37 (14 logi)fima b0 j)*d*)
i=j+1

~0 ((1 v 10gj)3jmax(_d’_<)_1> : (D.34)

and the proof can be carried out the same way as (D.27). Thus, (D.20) holds.
Turning to (D.21), consider the partial derivatives 97;(0,t)/dp(;), where

or; (6, t)
Ipq)

= v[(bi(ew) - bilen))Ze(0)Sh ) (D.35)
—v[(b1(p) = mi(d) - bi(p) = m(d)Zu(0)(By, 4Bt + Bipy By 1) Ee(0)Sil (). (D-36)

By assumption 3, the partial derivatives are of order Bj(cp(l)) = 0bj(p)/0¢pq) = O(j ¢—1), so that
for the first term (D.35), analogously to (D.12)

[(br(eqy) -+ i) E(0)] ) = O ((1 +log j) jmax<—d7—o—1) 7

and, analogously to (D.13)

[(61(90(1)) e bt(SO(l)))Et(e)Sd,t}(j) =0 ((1 + logj)jmax(fdﬁofl) ; (D.37)

so that (D.37) determines the rate of (D.35). Next, consider (D.36), for which one has by (D.12)
and (D.23)

[(b1(0) = m1(d) -+~ be(p) = me(d))Z4(0) (Byy ) 1 Bt + Blp 1By ()
j—1

=0((1 +log )™= 4=O1) 4 O Y0 (1 + loga)im=4=071(j — 5)=¢)
=1
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t

+0( Y (1+1og)im™=1=071 G — j)=71) = 0 (14 log j)2™>(~*=071) | (D.38)
i=j+1

where the proof is identical to (D.25). By the same proof as for (D.26), by (D.6) and (D.38)

[(b1(p) = m1(d) -+ belp) = m(d)Ze(0) (Bl ) Bt + Bip i Biogy )Ze(0)] )
:O<(1 + logj)Qjmax(—d,—C)—l)

7j—1

(Z 1+ log1) 2 jmax(—d,—¢)— (] Z)max(—d,—g)_1>

=1
t

+0(( Y (1 logi)pimex(-a=0-1 (i — jymax(-d—0-1)
i=j+1
=0 ((1 + logj)?’jma"(’d”@’l) . (D.39)
Finally, again by using the same proof as for (D.27), by (D.1) and (D.38)

[(D1(p) — m1(d) - - - be(ep) — (d))Zs (9)(3' l) +Bot + Bl By, )Z(0) S0 )

= O((l + 10gj)3 :max(—d,—() 1) + O( 1 + log ,i)S,imax(fd,fC)fl(Z- _ j)7d71>
=741
=0 ((1 +1log7)3j jmax(—d,—¢)— 1) ) (D.40)
Together, (D.37) and (D.40) yield (D.21). 0

Lemma D.5 (Convergence of the partial derivatives of 7;(6,t) to 7;(6)). For the partial derivatives
of 7j(0,t), it holds that

or;(0,t) 87'] > 81"” 5 o
’ _ .k _ 1+ logt tmax( 0—C)—1
90 lo=6 ‘9 0o kzt;ﬂ ‘9 o O<( +logt) ); (D.41)

with r; ;1 (0) as given in lemma D.3.

Proof of lemma D.5. From (D.18) and below rrj;41(0) = —vRs ), where

Rs;, =[(be11(p) — me11(d)) (RaSy, + Rasy)]()
+ [(01() — mi(d) - - - be(p) — me(d)) (Rasy + RiSqy)] ),

and with By; and Sy, as defined in (5), 8; = (be(p)---b1(p)), s; = (m(d)---m1(d)) as given in
lemma D.1, and R;, Rs, R3 as stated below (D.16). The partial derivative of Rs ) w.r.t. the [-th
entry ;) is thus given by

OBs,)  [9(bis1(p) — My (d))

0 0 ’ ()
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(i(e) —m(@d) | Oble) = md)Y (s

i ( 90 0 > (7 t+RISd’t)](j) (D-43)
[ 08, ds,

+ _(bt+1(<P) — i41(d)) (Rz 26, + R3 89(l)> . (D.44)
[ s/ ds’,,

() = w1 (@) () — ) <R2 8‘3’95) g )] (D.45)
L (9)
‘ OR! ORs

+ [ate) - mata) i+ 9l . (D.46)

(00 = ma) - ) =m0 (G + )| Lo
- (J

As noted in the proof of lemma D.4, the partial derivative of m;(d) only adds a log-factor to the
convergence rate of m;(d), i.e. Om;(d)/0d = O((1 + logj)7~¢!), see Johansen and Nielsen (2010,
lemma B.3), while db;(¢)/dpq = O(j7¢"') by assumption 3. Thus, the convergence rates of
(D.42) and (D.43) can be derived analogously to the proof of lemma D.3. This yields that (D.42)
is O((1 +log(t + 1)) (t + 1)m&x==O=1(] flog(t + 1 — ))2(t + 1 — j)™*(=d=O=1) "while (D.43) is
O((1+1log(t+1))3(t+ 1)mx=d=O=1(1 4 log(t + 1 — j))2(t + 1 — j)™&(=4=0=1) "and the additional
(1+log(t+1)) term stems from Omj(d)/0d. Analogously, the partial derivatives of s; and Sy only
add a log-factor to the convergence rates as derived in the proof of lemma D.3. Thus, it holds
that (D.44) is O((t + 1)™>x4=O0=1(1 4 log(t + 1 — 5))3(t + 1 — j)max(=4=O=1) while (D.45) is
O((1+1log(t+1))2(t+ 1)mx=d=O=1(1 4 log(t + 1 — j))3(t + 1 — j)™&(=4=0=1) "and the additional
(1 +log(t +1 — j)) term stems from Js;/9d and 9S;,/9d. For the last two terms (D.46) and
(D.47), note that Rz = O(1) as shown in (D.17) and below. Since £;(9f:/00()), s1(9s:/00),
50, (BB ot +15,541) SUOVOBLB g +v5,5a1) 100y, and (BB s +5}54)(9Z(6) /001 (BB +
vspSq,) are O(1), it follows that

OR3

8T(Z) = —(R3)

78 —
289(0 [(1+ BiB: + v+ vsist) — (Bi By + v81Sa4)Ze(0) (B 18t + vSys1)] = O(1).

For the partial derivatives of Ry, consider

ORs,,  ORy ., 9Z,(0)

= — B ! = N — 'B / D4

89(1) 89([) [(/Bt ot T VStSd,t) t(e)] () R3 (ﬁt ot T Vstsd,t) 89([) :| " ( 8)
,0B,, P, o ds, 9S4,

L Sai+vs ’)5,5(9)} . (D.49)
()

By + =L Boy+ sS4t + VoS,
[( Lobgy 00" 96y, 96,1 06

where the first term in (D.48) is O ((1 +log(t + 1 — 5))(t + 1 — j)™(=4=O=1) by (D.17) and by
OR3/00(;y = O(1). For the second term in (D.48), one has [(5; B, t—{—l/stSdt)E’t(G)] () = O((1+log(t+
1—7))(t4+1—j)m2x(=d=0=1) from (D.17). Together with 5 ( (8)/00) +(0)[(0/00)) (B, 1Byt +
Sy Sat)]Ze(0), (D.22) and (D.23), it follows that

[1]

0

{(ﬂ;Bw,t + VSQSd,t)ut( ) 39(1)

(B/ tB‘p7t +VS¢/17tSd,t):| } )
(4)

o7



—0((1 +log(t + 1 - )(t +1 - j)mx-d-01)

+O( ) (L +log(t + 1 —k))(t+ 1 — k)40 (14 log(j — k) (j — k;)max(*dfofl)
k=1

t—
+O<Z (1+log(t+1—j— k)t +1—j— kymax(=d=0=1 4 (1 4 log k)kmaﬂ—dv—o—l)
1

k=
=0 ((1+1og(t +1 = j))*(t+1 = jym=x=t=0-1),

Finally, using (D.6), one obtains

- d -
{BiBon + vs500500) | 5y (BluBios + vS0501) | 20)
@ () (D.50)

:O((1+1og(t+1—.7)) (¢ 41— j)ymex=d=o- 1)

which yields the binding rate of convergence for the second term in (D.48). For (D.49)

0B t 8,3’ ov 6 85’(“
/ ®, tB 4+ 5 S +yt S +u ;
< Y000 000 7t 08 T o0 T fae(l) 0

= O ((1+log(t + 1= ))(t 41— jym=x=t=071),

by lemma D.1. Hence, using (D.6) yields an upper bound for (D.49)

0B 08! ov 0s} , 08,
[(ﬂ{ LN B By + StSdt +v— Sdt + vs] dt) Et(H)}
(

= O ((1+log(t +1— )t + 1= )™ ‘HH) -
Together, the rates of convergence of (D.48) and (D.49) yield
ORy, .
D =0 (14 og(t+1— ))P(t+ 1 — jymCa=0-1), (D.52)
20y

For the partial derivatives of R, note that

OB, ORaw ¢ o / = / ’ 0=1(6)
89(l) = — 89( ) [(/BtBKP,t + VStSd,t)n:t(Q)] (]) - R2(2) |:(BtB¢,t "'I_ VStSdﬂf) 89(0 :| (]) (D53)
0By 0p; ov 0s} ;054\
—Ry, [<5t ZD) 80(; By + 0, spSa + T o )Sdt s 0, ):t(G)} ) (D.54)

From (D.17) and (D.52), the first term in (D.53) is O((1 +log(t+1 —))*(t + 1 — i)max(-d=O-1(] 4
log(t + 1 — §))(t + 1 — j)max(=4=O=1) " Similarly, using (D.50) and the convergence rate of Ry,
as derived in the proof of lemma D.3, the second term in (D.53) is O((1 +log(t +1 —4))(t + 1 —
i)max(=d=O=1(1 £ log(t + 1 — j)*(t + 1 — j)mex(=d=O=1) By (D.51), it follows that (D.54) is
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O((1 +log(t +1 —4))(t+ 1 —3)x(=d=O=1(1 4 log(t + 1 — ))2(t + 1 — j)™m&x(==O=1) Thus

aRl<m‘>

= O((1+log(t +1 - )!(t + 1 —g)mx(-4=0-1
a6

(D.55)
x (1+log(t+1—5)*(t+1- j)ma"(‘d"o‘l)-

With (D.52) at hand, it follows directly for (D.46) that

/
(St + Gatst) =0 ((0+togle+ 1= ) (e1 - jymx-iooT).
90 ) Ny ") 4

By (D.1) and (D.2), it follows that (D.46) is O((t + 1)™>(=4=O=1(1 + log(t + 1 — 5))°(t + 1 —

jymax(=d=0=1) " For (D.47), it follows from (D.52) and (D.55) that ( SFas,+ SRS, =

O((1+log(t+1—i)*(t+1 —i)max(=4=O=1(1 4 log(t + 1 — j))?(t + 1 — j)max(=4:=O)=1)  Again using
(D.1) and (D.2), it thus follows that (D.47) is O((1 +log(t+1))°(¢t + 1)mex(=d:=0=1(1 4 log(t + 1 —
)PE+1— j)max(’d”@’l). Together, this implies for (D.41) that

M — O((l + log(t + 1))5(t + 1)max(—d,—<)—1
89(1)
x (1+1log(t+1— ) (t + 1 — jymax(=d=0-1)
and thus % Z;O:Hl rT7j7k(9)|9:90 -0 ((1 + log t)5tmax(—d0—§)—1) ' 0

Lemma D.6. For the truncated score function as given in (C.2), and the untruncated score function
as given in (C.3), it holds for all § € O3(k3) that

9Q(y,0)
|2

0Q(y, 0)

00

] = 0,(1). (D.56)
0=0o

=vo

t—1 BTJ‘ (9,1‘,)
7=1 00

Proof of lemma D.6. Define hy; = )

. 7 _ fe'e) 67’(0) ng .
9:60&_](610)’ hljt = Zj:l 59 Hzeoft—g(do)a as
well as hoy = ZE;B 75 (6o, t)agt(gié(d)‘e_a ,and hyy = > 720 Tj(ﬁg)agt(gié(d)‘e_o . Then plugging (C.2),
(C.3) into (D.56) and using (B.11) yields ’

0:90]

= i [Z @t(GO)(;LLt - h17t) + Z hl,t (17,5(00) — Ut(%))]

00

=bo

00

+ } [Z ﬁt(go)(ilzt - h2,t) + Z h2,t (17,5(90) — Ut(ao))] s
" =1 t=1

so that it remains to be shown that all four terms in (D.57) are o,(1). i
For the proofs it will be very useful to note that v;(6y) adapted to the filtration ]-"f =0(€,5<t)

is a stationary martingale difference sequence (MDS), as explained in the proof of theorem 4.2. Note
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in addition that all I~11¢, ilgjt are ffﬁl—measurable, as 19 = mg = 1 are invariant w.r.t. 6.
Starting with the first term of (D.57), by plugging in hy and hy

=3 b0 = i)
t=1
2 On . O7i(0,1) .
= 7 2 0(0) &—j(do) — &—(do) (D.58)
ft; Vo0 HO( 0 0)
n t—1 A .
+ ;ﬁ > a00) 3 ont) - onlh) ) &—j(do) (D.59)
t=1 7=1 =00 0=0,
+ in Z (o) Z 87(;;0) étfj(do). (D.60)
=1 j=t =00

As Y2 =5 BTJ(G | o " & i(do) is ff -measurable, 0;(6o) > 52, =5 QTJ(G o o &—;(dp) is also a MDS. Since

J
o7 9)|0 6 = 01+ log j)*jmax(=do,=0=1) " see lemma D.4, it follows that (D.60) is o,(1). In

(D.59), v4(09) Z] 1 (aT] 9)|9 o aTJ(at ’6 00 )5,5 j(do) adapted to .7:5 is a MDS, while the sum

- oT;(0 oT;(0, max(—dp.—
23211 é(g )‘9:90 - # 9_90> &—i(do) = O,((1 + logt)>t™ax(=do,=0)) by lemma D.5. Hence

D.59) is 0,(1). For (D.58), note that by assumption 1
( p ; y p

2
@ﬁww—@ﬂ%ﬁl}

{[Z”t Zarj(e )

7=1

6=09
n

=F Z (annin(s,t)fﬂj(90)7j+|t—s|(90))
s,t=1 j5=0
t—1 j
0 0
Z (Z LA al(SDO)Wjth—k—z(do)) (D.61)
=0 k=0 6=60 1=0
s—1 j
0t(0, s
% < ka(gz) zal(S"O)ﬂ'j—i—s—k—l(dO)) ]
k=0 6=0, 1=0
n min(s,t)—1 j—k
+ Z E ( Z €min (s,t)—7 (Z Tk 00 al @O)Wj—k—l(d0)>
s,t=1 3=0 =0
Jt[t—s| GH|t—s|—k
X Z 7k(60) Z ai($0)mj|t—s|—k—1(do) )
o = (D.62)
o0 1 t) j
XZE (Z Zal (00) )tk l(d0)>
J=0 k= 0=0o 1=0
~ O7:(0, s J
X ( ka(@/) Zal (00)Tjts—k— z(do)>]
k=0 0=0, 1=0
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“Lor 0,t
- (Z ka(e )

(D.63)

6=0, 1=0

For (D.61), T use Y020 n2u o7 (00075 s(80) = Op([t — s|m™(0=01) for t # s, else

O,(1), see lemma D.2, and Zt L 87’“(“ ‘9 % {:0 ai(p0)Tjsi—k—1(do) = O((1 + log(t + 4))%(¢t +
j)max(=do,— C)*l), see (D.1) together w1th lemma D.4. This yields the upper bound for (D.61)

KZ( Z max do,fC)fl(l_i_logt)ﬁtmax(fdo,fg)fl+(1+10gt)12t2max(fd0,*4)*l
t=1 s=1, s<t
+ Z max do’_o_l(l—{—10gt)6tmax(_d0’_o_1>
s=t+1

<K (14 logt)bmext=do=O=1 — O(1).
t=1

Similarly, for the second term (D.62), by (D.1) and lemma D.2 it holds that

min(s,t)—1 j j—k
[ Z 6?mn(st (Z Tk 90 Za’l 900 Tj—k— l dO))
k=0 =0

j=0

JHt—s| JHlt—s|—k
X ( Z T (6p) Z az(@o)ﬂjuskl(do))]

k=0 =0
min(s,t)—1
< Yo (Ltlog )’ O™ (14 log(j + [t — s)))*(j + |t — o)~ (0O
j=1

Furthermore, by lemma D.4
. [iﬁz (ti 07 (0, 1)
—J 00
< Ok (0, )
00

oo
Z (14 log(t +)° (¢ + )™ 977N L+ log (s + ) (s + )™=,

j
> a(po) ek z(do)>

0=0, 1=0

J
Z al(SOO)Wj—i-s—k—l(dO))

0=0¢ 1=0
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so that by the same proof as for (D.61), it holds that (D.62) is also O(1).
By (D.1) and lemmas D.2 and D.4, the third term (D.63) is bounded from above by

ZEKZ% . (Zrk (60) Z (P0)mj k- l<do>)

s,t=1

00 7 j—k
X (Zeg—j (ZTk(90) (¢0)Tj—k l(d0)>
j=s k=0 =0
on,s)| =
x ( %9,’ > ai(po) - z%)))]
k=0 =00 1=0

Z 1+logt 9t2max( do,—¢)— 1(1+10g8)9 2 max(—dp,—¢)—1 O(l)
s,t=

As all three terms (D.61) to (D.63) are O(1), it follows directly by the scaling that (D.58) is 0p(1).
Now, since (D.58) to (D.60) are op(1), the first term in (D.57) is also op(1).
Next, consider the third term in (D.57). I plug in hg; and hg; which gives

2 n
—= ZQNJ (60)(ha,t — hay)
(e
n t—1
2 . 9&—;(d) 96— ;(d)
=—=> 5(60) Y _7i(60.1) ( - (D.64)
(r 3=0 00 0=00 09 0=0o
n t—1
2 &, 0,5 (d)
+ = " 0(00) > (15(00) — (0, 1)) = (D.65)
Vi = = 0,
2 N\ N €5 (d)
+—=> W(00) > 7i(60) =2 (D.66)
Vn P e 00 o—ts
For (D.66), note that (f)t(Ho),ff) is a stationary MDS, and the sum Z;’it Tj(90)8& z d)|9 6, is

ff_l—measurable Since 9&;_;(d)/90 is Oy(1) for all d > dy — 1/2, it follows by lemma D.2 that
> 52 7i(0o) 8& 55 (@) |z _g, = Op((1 +log t)pmax(=do,=0) “and thus (D.66) is o,(1).

For (D.65), note that #,(60) Y55 ((6o) — 75(60, 1) %55 |,_, together with Ff is a MDS.
Furthermore, by lemma D.3, it holds that 7;(6y) — 7; (6o, ) O((1 + log t)?tmax(=do,=0)=1) " Since
the partial derivatives of &(d) are bounded in probability, Zt ; o (15(60) — 75(60,1)) 0% 5 @)
O,((1 + log t)?tmax(=do,=C)) " Therefore, (D.65) is 0,(1).

For (D.64), I use M = —j~! as shown by Robinson (2006, pp. 135-136) and Hualde

’9 0o

’d do

62



and Robinson (2011, p. 3170). Thus, the partial derivative in (D.64) w.r.t. d is

06, (6)
od

~95(0)
od

ax (o). (D.67)
0=0¢

,Z]—lnt J+Z ﬁzaﬂtﬂ k(d
7=0

0=09 0=09

As the partial derivatives w.r.t. all other entries in 0 are zero, by assumption 1 it is sufficient to

consider
SN 96— j(d) 9&—;(d) :
E 3(00) Y _mi(00:t) | =55 Y
t=1 Jj=0 6=0¢ 0=09
n min(s,t)—1
=Y E [ Monin(s,t)— 77 (00)Tj 11 s(GO)]
s,t=1 7=0
«E i 2 — Tk (905 ) § Tk(0078)
j:on_j k= 0t+] k k:08+j_k
- - . ¥ (D.68)
+) €% ( 7k(0o, t) al(@o)ﬁg% )
3=0 k=0 0=0,

)]

n min(s,t)—1 j j—k
+) E [ €rin(s.t)—j (Z 7(0o) az(wo)ﬂjkl(do)>
Jj+|t—s| j+|t—s|—k
X 7 (00) Z ar(¢0) T4 |t—s|—k—1(do) ]

e t—1 s—1
S, (3 ) (2 ) 9
k=0

Zntz_ﬂj(@o) i W +) € (Z 7k (6o) al(@o)ﬂj—k—l(d0)>

B (D.70)

0
o9 s—1 o] J
[an—ﬂj(%) _Tj(_g:s) + Z € (Z 7i(00) > al(%DU)Wj—k—l(dO))

.

k=0 =0




For (D.68), note the first expectation is Un 0 me =)= Tj (00)7j4—s(B0) = O(|t — g|max(=do,—¢)—1)
for all t # s, and O(1) for t = s, see lemma D.2. For the other terms in (D.68), it holds that

B[220 (Shch (00, 0 ) (Shch m(00, 9) 55 ) ] < K 552 0(1+log(t4+))(t+5) 7 (1+
log(s + 7))2(s + )7}, together with

Z (ZTk Op,t Z ( )Wb_%)

7=0 =0
s—1 J
3 s
<§_:Tk Bo. 5 ;al W}g(){))]

(1 +log(t + 7)*(t + )"0 (1 + log(s + ))* (s + j)momO7,

oI

Il
=)

<K
J

by lemma D.2. It follows that (D.68) is bounded from above by

KZ S (= sy OIS og(t+ )2 (¢ + 4) (1 + log(s + ) (s + 4) 7
= s=1, s<t 7=0
+ Z(l +log(t + j))*(t +5)72
j—O
+ Z ymax(=do,=¢)= IZ 1+ log(t +7))(t+ 4) (1 +log(s + 5))*(s + 5) "
s=t+1 7=0
<KDY |1+ logt)tH”] < Kn",
t=1

for 0 < r < 1/2, since 3 72 (s +3§)72 = O(s7!), see Chan and Palma (1998, lemma 3.2), and,
as the logarithm is dominated by its powers, »-°2 (1 + log(s + N2 (s 4+ 5)72 = O(s~1*%) for all
0 < k < 1/2. For (D.69), by lemmas D.1 and D.2, the first expectation is bounded by

min(s,t)—1 j j—k
Z E1211111(515 <Z Tk’ 00 Zal (100 Tj—k—I dO))
3=0 = 1=0
J+|t—s| j+|t—s|—k
X Z Tk(eo) Z al(wo)ﬂjﬂt—ﬂ—k—l(do) - O(|t _ S|max(—d07—C)—1)’
k=0 =0

for all t # s, and is O(1) for t = s. Hence, by the same proof as for (D.68) the second term (D.69)
is also O(n"), 0 < k < 1/2. For the third term (D.70) one has by lemma D.2

Jj—

t—1 0o i k
—Tk 00a
> "7 7i(00) > j(k+ d e, (E (00) > ar(o)mj—n— zdo)>
j=t k=0 J=t k=0 =0

t—1 j—t 0o s—1 . s
x (ZTk(Qo,t)Zal(SD )2l )] [Znimw )y o
k=0 1=0 0=0o j=s k=0
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)]

) (iO ((1 + 10gj)3jmax(d°’o2)) i O ((1 + 1ogj)3jmax(do,<)2>)
)

s,t=1 \ j=t j=s
n o0 o0
i ZO <(1 i logj)7j2max(—do,—g)—2 ZO <(1 i logj)7j2max(—d0,—g)—2)
s,t=1 \ j=t Jj=s

+ ZO ((1_i_logj)?:jmax(—do»—C)—Q) (ZO (( +10g])7 -2 max(—dp,—¢)— 2))

st=1 \ j=t j=s

+ io ((1 + logj)7j2max(d0702)) (io ((1 + logj)SjmaX(do,C)Q)) 7

sit=1 \ j=t J=s

which is O(1), and thus all terms (D.68) to (D.70) are O(n"). As (D.64) is appropriately scaled, it
follows that (D.64) is 0,(1) and thus the third term in (D.57) is o0p(1).
Next, consider the second term in (D.57) that can be decomposed into

Z ’Ut 90 —’Ut(€90 \thltz gt —j dO — & j(d0)>7_1(00a )
=1 (D.71)

ZhltZT] (60) — 75(60, ))& (do) + ZthTJ 00)&r—;(do).
j=
For the first term in (D.71), note that by assumption 1

“

n t—1 2
D ey (Ej(do) = &—j(do))T; (b0, t)] }
=1 =0

n min(s’t)_laTj(e,min(s,t)) OTj41t—s/ (0, max(s,t)) 2
— E 7 Mmin(s,t)—j
> Z 0 99
s,t=1 ]_0 9:60 9:90

[Z <Z 7k (6o, t Zal (00)Tjtt—k— l(do)> (D.72)
0
’ s—1 j
X (ZTk(QO; Zal 900 Mjts—k— l(dg))]
k=0 =0
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min(s,t)—1 j
otk ( 0 min(s,t))
Z mln s,t)—j (Z

j—k
Z?Tl(do)aj_k—l(SDO))

=0 k=0 =6, 1=0
J+lt—s| GHt—s|—k
oT 9 max(s,t
( > il ) > m(do)aj+|t—s|_k_z(900)>]
k=0 0=0, 1=0 (D.73)
0 — J
xE [ZGZ <Z (0o, t Zal (00)Tjrt—k— z(do))
s—1 i
X (ZTk 60,8) Y a(po)mj sk l(d0)>]
k=0 1=0
n oo t—1 min(j—k,t—1)
0T (0,t
+2 B [(Z (Z aul > m(domj_k_z(soo))
si=1 =t k=0 9—6,  1=0
-1 j—t
X ( 7k (6o, 1) al(SOO)Wj—k—l(dO)) )
k=0 1=0
D.74
00 s—1 6Tk(9 8) min(j—k,s—1) ( )
XY e (Z BT > Wl(do)aj—k—l(¢0)>
j=s k=0 6—6,  1=0

<
V)

s—1
X (Z Tk (0o, S)
k=0

For (D.72), one has for all ¢ # s

az(QOO)Wj—k—z(do)) )] :

l

Il
=)

min(s,t)—1 .
07 (6, min(s,t)) OTj 4 )1—s| (0, max(s, t)) 2 max(—do,—¢)—1
E[ 2. T o0 Mings.)—j | = O(It — s"XA0=070),
j=1 =06 6=0o

by lemma D.4, and O(1) for ¢t = s. Furthermore, for (D.73), the first term is bounded by

min(s,t)—1 ) J 97,0, min(s, t))
Z 6min(s,if)—j Z 00

=k
Z m(do)%-k—l(@@)

- k=0 0=0, 1=0
It JHlt=s|—k
071, (0, max(s, t
< Z : 89’( ) Z ”l(dO)“j+|ts|kl(900)>]
k=0 9—=6, 1=0

_ O(’t - S,rnax(fdo,fg)f”7

by lemmas D.1 and D.4 for ¢ # s, and O(1) otherwise. In addition, for both (D.72) and (D.73), by
lemmas D.1 and D.2 the other remaining term is bounded by

00 — J s—1 J
BE) ¢ (ZTk (60,) > ar(0)mj+—k—1(do) ) (ZTk (60,9) Y ar(00)mj s k- l(do))]
=0 - 1=0 = 1=0

=0 ((1 + log t) tmax(—do,— )(1 + log S)SSmaX(_d07_O_1> .
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Consequently, (D.72) and (D.73) are 37, _; O((1 4 log t)3¢max(=do.=0) (1 4 log 5)3smax(~do.—O =L |t —
S‘max(—do,—{)—l) = O(1). Finally, by lemmas D.1, D.2, and D.4, (D.74) is

s,t=1 Jj=s

Z E [ (ZQ i ( (1+1log )52 ™t d°’<)2)) (ieijo ((1+10gj)9j2max(do,C)2))]

n
Z 1+logt 9t2max( do,—¢)— 1(1+10g8)9 2max(—dp,—()—1 O(l)

Thus, the first term in (D.71) is o,(1). For the second term in (D.71), note that by lemma
D.3, 325m1(7(00) — 73(60,4) < K 3250y Y2 (1 + log k)2 (1 + log(k — )2k (k —
J)9 < KA+ g1 4 log(t - ) = RO < KOt
1ogt)2t—1 PO e Ot — jymax(=do.=O)(1 4 log(t — 4))? < K(1 + logt)>¢mex(=do.=0)=1 "and
thus \/ﬁ oy hl,t ZFI(T]( 0) — 75 (00, 1))&—;(do) = 0p(1). For the third term in (D.71)

990]

o) 0o j—k
anjTt+j(00)Ts+j(00) +Z 2_ <Z Tk (00) Zaz PO)Tj—k—i do)) (D.75)
j=0 3=0 k=0 =0
J Jj—k
(Zmrk (60) > ar(o)mj—k—i do))]
k=0 1=0
E[

mm§) 1 mln(st <i 0 mln : t)>

j=0

2
E{ {Z hl,tZTj(QO)gtj(dU)] }

OTj|t—s|(0, max(s,t))
o6’

n min(s,t)— .
87"(9 min(s, t))
— § E 2 ’ )
- E |: nmm(s t)—j ’ o0

s,t=1

0=0¢

j—k
Zm(do)ag‘—k—l(@o))
) 1=0
J+lt—sl—k

> m(do)aj+tskz(<ﬂo))]

6=0,

Py
s,t=1
" ]—His O7k(0, max(s, t))
k=0
x E

o0’ 1=0
6=60 = (D.76)
(o) oo J Jj—k
Zn_jrtﬂ(ﬁo)uﬂ (6o) —1—262_ (ZTtJrk (6o) Zal ©O)Tj—k—1 do))
j=0 7=0 k=0 =0
J Jj—k
(ZTSM (0o) Zal ©0)Tj—k—1 do))]
— 1=0
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min(j—k,t—1)

Z Wl(dg)aj_k—l(SOO))

0=0, 1=0

j—t j—t—k
X (Z 7j+k(00) al(‘PO)Trj—t—k—l(dO)> )
0 =0 » (D.77)
S ) s—1 aTk(G, S) min(j—k,s—1)
X Z €s—j Z 0 Z m(do)aj—r—1(¢o0)
j=s k=0 =0, 1=0
j—s j—s—k
X ( 7j+k(00) az(@o)ﬂjskl(do)> )] -
k=0 1=0

For (D.75) and (D.76), it holds that

j—k J j—k
Z %, (Zﬁ—s—k (6o) Zal ©O)Tj—k— ldo) (ZTS+k (0o) Zal ©0)Tj—k— ldo))]

J=0 k=0 1=0
=0((1 +logt) tmax(_do’_o(l + log 5)3gmax(=do,=O)—1y,

and E [Z]‘?’;O T]%jTt+j(90)Ts+j<90):| = O((1 + log t)t—™in(do:9) (1 4 log s)s~ ™(d0:O)=1) " Thus, analo-
gously to (D.72) and (D.73), expressions (D.75) and (D.76) are O(1). Also analogously to (D.74),
by lemmas D.1, D.2, and D.4, (D.77) is bounded from above by

(Z 250 ((1+10g) 5 90=071(1 4 log(j — 1)*(j — t)mx(-dm-o-l))

(f} 250 ((1+log )09 1(1 4 log(j — 5))*(j - s)ma"(-do’*)—l)) ] = o).

j=s

Therefore, also the third term in (D.71) is 0,(1). It follows that the second term in (D.57) is 0,(1).
Finally, consider the last term in (D.57)

\jﬁzhwt(ew vr(60)) fzhztzajdo — &—5(do))m; (60, )
= (D.78)

fzhmz 75(00) — 75 (00, ))&—;(do) + IZthZT] (00)&1—;(do).

For the first term in (D.78), by assumption 1 it holds that

t—1 2
) > (& j(do) — ft—j(do))Tj(Ho,t)] }
60/ §=0

R

(e

t=1 \ j=0
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n min(s,t)—1 j
1 .
= Z E [ W?nin(s,t)—j <Z ij_k(Hg,mm(s,t))>
Jj+|t—s| 1
% Z %Tjﬂt—s\fk(@o,max(s,t)) ]
k=1

(D.79)
Zez_] (ZTk to,t Z (00)Tj+t—k—1(do )
7=0 k=0 =0
s—1 J
X (ZTk(Qo’ )>  ai(po)mjs—k—1(do )
k=0 1=0
n min(s,t)—1 j j—k aﬂl(d
+ Z E [ Z €omin(s.1)—j (Z (00, min(s, t))z 5d ajkl(‘PO))
si=1 =0 k=0 1=0 =0,
JHlt—sl Jtlt—s|—k
om(d
X( Z 7(0o, max(s, t)) Z (;El ) aj+|t—s—k—l(900)>]
k=0 =0 6=06q (D80)
00 J
x B 262 (Zm (6o, 1) Zaz 900)7Tj+t—k—l(do)>
=0 1=0
J
(Z 7 (6o, 5) Zal(sﬂo)ﬂj+s—k—l(do)) ]
I—
n t—1—k or (d)
+Y B (ZEE_](ZT;@(@M > 8ld aj—k—l(‘PO))
s,t=1 j=t = =0 0=0¢
—t
(Z 71 (00, 1) Zal Soo)ﬂ'j—k—l(dt))) )
1=0
) s—1 s—1—k or (d) (D81)
1
X (Zeg_j <Z7'k:(9075) > 9d &j—k—l(%))
j=s k=0 1=0 =6,

s—1 Jj—s
x (Z 7100, 5) Z az(@o)%—k—l(%)) )] ;
k=0

=

while all other partial derivatives of §_;(d) (i.e. those w.r.t. all other entries except d) are zero.
By lemma D.2, the first term in (D.79) is

min(s,t)—1 JHt—sl
! Z nmm st)— (Z 7 Ti-k (6o, min(s, t))) Z ETJ+|t,s|,k(90,maX(s,t)) =O(t — s|™1),
k=1

for t # s, and O(1) otherwise. In addition, by lemmas D.1 and D.2 it holds that the first term of
(D.80) is

min(s,t)—1 7 j—k aﬂ'l(d
El Y i (Z (60, min(s, ) > 2d aj—k—l(900)>
§=0 k=0 1=0 0=0,
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Jjtt—s|—k
om(d
Tk (0o, max(s, t)) Z gc(l

=0

) aj+tskz(30o)) ]
6=,

(D.82)

for t # s, and O(1) otherwise. The second term in (D.79) and (D.80)

t—1 J s—1 J
(ZTk fo, t Zal ©0)Tj+1—k—1(do ) (ZTk 60,9) Y ai(po)mj sk l(do))]
k=0 =0

=0((1 +logt) tmaX(_dm_ )(1 + log S)Ssmax(—d07_c)_1)

Thus, analogously to (D.72), (D.73), (D.75) and (D.76), it holds that (D.79) and (D.80) are O(1)

B>,

7=0

Finally, (D.81) is bounded from above by

Zet —j ( 1 +10gj)4jmax(_d°’_o_1) 0] ((1 + log j)? jrmex(=do,—=0) )

£[(2

(i

( (14 10gj)4 'maX(—dov—C)—l) 0 ((1 + 10g])3 ‘max(—do,—¢)— 1)) ]

J

’

Hence, the first term in (D.78) is 0,(1). For the second term in (D.78), by lemma D.3,
) as already noted for the second term in (D.71), and thus

O((1 +log t)T¢?max(=do.=0=1(] 4 Jog 5)smax(~do.=0=1) = O(1).
i=1(75(00)—

7i(0o,t)) =

= O((1 + log t)¢max(~do,~¢)
i hag S i1 (75(60) — 7i(00,))&—5(do) = 0p(1). For the third term in (D.71)

n min(s,t)—1 j
1 .
[ nr2nin(s,t)—j (Z ETj—k(em min(s, t))>

=t k=1
sl
% Z %Tj+|t—s\—k(90,max(5,t)) ]
k=1
(D.83)

277 T+ (00)Ts+5(60)

Q

7=0
o k

—l—Z 2, (Z Te+k(00) Zal(%)ﬂjkl(do))
7=0

=0
J J—k
x ( > Terk(00) Y al(Wo)ﬂjkl(do)M
k=0 =0
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n min(s,t)—1 7 ji—k 87Tl(d)
+ Z E[ Z 612111n(s,t)—j (Zm(@o,min(s,t)) od j—k l(‘PO))
sit=1 §=0 k=0 1=0 0=0,
J+[t=s| JHt—s|-k
om(d
X ( T (0o, max(s,t)) Z 8lc(l) aj+|t_s—k—l(@0)>
k=0 =0 A 6=0q (D84)
00 J Jj—k
277 T4 (00)Tsr(60) + > €2 (Zmrk (60) > au(po)mj ki do))
7=0 7=0 =i 1=0
J J—
X (ZTerk bo) Zaz (0)mj—k—1 do))]

k=0 =0

n 00 t—1 t—k—1

om(d
+> E (fo—j 760, t) alé) @j—k—l(¢0)>
s,i=1 =t k=0 1=0 0=0,
j—t j—t—k
X ( ik (6o) ai($0)Tj—t—k z(do)>)

k =0 (D.85)

&j—k—l(%))

0=0o

As noted above, the first expected value in (D.83) is O(|t — s|™1) for s # t, else O(1). For the
second term (D.84), note that the first expectation is O(|t — s|™&x(=do,=0=1) for 5 =£ ¢, else O(1),
see (D.82). Furthermore, as shown below (D.77), the second expectation in (D.83) and (D.84) is
O((1 + log t)3¢max(=do.=0) (1 4 log s5)3s™ax(~d0,=O)=1) "and thus (D.83) and (D.84) are O(1). Finally,
the last term (D.85) is O(1), and the proof is identical to (D.81). Thus, also the third term in
(D.78) is 0p(1). This shows that (D.57) is 0,(1) and completes the proof. O

Lemma D.7 (Boundedness of third partial derivatives of Q(y,0)). For d € Ds as defined in the
proof of theorem 4.1, v € X, as defined in section 4, and ¢ € Ns(po) as defined in assumptions 2
and 4, the third partial derivatives of the objective function (16) are uniformly dominated by some
random variable By, that is Op(1),

3
de Dy ey peNs(po) | 00G)
Proof of lemma D.7. The third partial derivatives are
% 72”: d%v(9) avt(e) L2 2": v (0)  0?v:(0)
901,001y 0 89(k 20q) 0y 1 — 90y 001)00 1)

oA 0 2 & Pvy(6
I 7 e R I CF ety s

t=1
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for k,l,m = 1,...,q + 2, with 9v¢(0)/(90 1)) in (B.11),
§ 0%7;(6,t) Pry(0.t) @+ (0, t) 0&_;(d)
ae(k 2| 99406 J 0y 9y
O7;(6,t) 0&—;(d) 0%6-;(d)
+ 70,1t
80qy 90 i )ae( 100 |
-1
Pu(0) tZ Fr0.0 o gy P10, % (@)
0190100y 5| D016 m) 903901y 90(m)

827']‘ (9, t) 8&/7]' (d)

aTj (9, t) 62£t7j (d)

00(y00(my 09 09y 90)06m)
0271(0,t) 9&,_;(d) | Or;(0,) 926_;(d)
00y00 ) 09z 09y 90400 m)
; 2 . 3 .
67—] (9, t) a gt*j (d) + 7_]'(0’ t) a gt*] (d) )
0 m) - 90196 001960 90(1m)

Boundedness in probability of the third partial derivatives then follows from (B.12) upon verification
of the absolute summability condition of the partial derivatives of 7;(6,t), as the derivatives of
&—;j(d) are zero for all entries of 6 except for d, and as those derivatives w.r.t. d are contained in
(B.12). As can be seen from lemma D.4 and its proof, the second and third partial derivatives
of 7j(0,t) depend on the coefficients bj(y) and mj(d), the matrices Z¢(6), Sa,

partial derivatives. While the convergence rates of the former are given in lemma D.1, those for the
O*mi(d) _
odz

B, , and their

first partial derivatives are contained in the proof of lemma D.4. In addition, we require

itj(d) = O((1+log j)%j~471) 83§§§d) =7 (d) = O((1+log j)3j~91) (see Johansen and Nielsen;

92bi(0) 7 o 9%, (¢) e
2010, lemma B.3), goit520 = bj(pwa) = 0G4 and gl 5o = b j(egum) = 0G4
fork,I,m=1,...

,q by assumption 4. Based on them, the convergence rates of the following matrices
are obtained

and

— O((1 +log(j — )% —i)~*Y) ifi <,

else,

3Say 7@ =O0((1 +log(j — )% (5 —9)~ ) ifi <y,
(Sd t) (i,9) — ( od3 )(i,j) - {0 lse,
S k(@) megj—i(d) = O((L+ j —i)~41) if i < j,
(Sa,e5a.4)0.9) = j—1 . 27 N—de1
> ko Th(D)Fhri—j(d) = O((1 +log(i — 7))*(i — j) ") else,

@S = Sy () j—i(d) = O((1+log(1+j — i) (14 —i)~41) ifi <,
d,tPd,t)(i,5) — i . . .
U i (@)t (d) = O((1 +log(i — §))2(i — )74 clse,
(&S = S Tk —i(d) = O((1+j —i)~01) it i < j,
d,tPd,t)(i,5) — i .
D S me (@) i (d) = O((1 +log(i — 5))%(i — ) ~41)  else,
B ) _( 0By ) _ Jbiilewn) = 0(G =) i <,
)1 - a . a9 . -
00D =\ Doy dewy )y |0 clse,
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(E(P(k‘l,m%t)(ivj) = (

0P (k)0 (1) 0P (1m)

3By > - bii(Pam) =0((G —i)=¢71) ifi <,
(4,5) 0 else,

22;116 (P(k0)bmys—i(p) = O((1 4+ =)™ if i < j,
S b (©)bmriej (D) = O((i — 5)~¢1) else,
(B B i) = S br () )bt j—i(P(my) = O((L+ 5 — ) =671 if i < j,
0,1) 5t <P(m),t ,7) — _
e S on(m) ) bnrii (e n) = O(((i — 5)~¢71) else,
(i Bod)s) — S W (Ot bhtj—i(0) = O((1 45 — i)~ if i < 4,
oyt Bont) (i) = .
ot S b (9) b hii (P my) = O((i — §)~¢1) else,

(B:P(k,z) ,tB%t)(iaj) = {

for k,I,m = 1,2,...,g + 2. As becomes apparent, the partial derivatives just add a log-term
to the convergence rates that is always dominated by its powers and thus does not affect the
convergence of the partial derivatives. It follows that the first, second and third partial derivatives
of 7;(6,t) are absolutely summable in j and thus satisfy the condition for (B.12). By (B.12),

3
T = 0p(1). -

Bpn = suPgep; ve s, peNs (o)

Lemma D.8. For the partial derivatives of vi(0), it holds that

9v(0)
00

~9u(9)
0

= i [an,jﬁt—j + qgeuft—g}

0=0o Jj=1

0=09

where d;n,j is O((1 4 log 7)%j 1), while ¢ ; is O((1 4 logt)5t™ax(=do.=O=1) for i < t and O((1 +
log j)7j "X =O7) for j > t.

Proof of lemma D.8. Consider

t—1

0t (0 Ov (0 oT;(0,t -
gé : N Qgé ) : 0.1) [ft—j(dO) - ft—j(do)} (D.86)
0=>0o 0=0, j=1 0=00
o -a (¢ T 97 0 ~
+Z gé ) N Tja(g 2 ] & —;(do) -I-Z T] &—i(do) (D.87)
Jj=11 6=6, 0—0, =0,
t—1 ~
+ > 7(00,1) lagtag(d) - a&aé() (D.88)
J=0 6=0¢ 0=00
+ Z 5 (680) — 75(60,1)] D5y K@) (D.59)
0=6, Jj=t 6=,

Since gt_j(do) —&—j(do) = py = ﬂ'k(do)ct j—k, by (D.1), lemma D.4, and assumption 2, the term

. o 9 ‘max
(D-86) 1S Z] t €t—j Zt ; Tk ) ‘9 0o l oal(@o)ﬂ'j k— l( ) Z] tO((l‘HOg])G ax(—do, =)= )et —j-
By lemma D.5, (D.1), and assumptlon 3, the first term in (D.87) is

t—1 t—1

or; (0 ar;(6,t) 673 o1;(6,1)
2 [ BT €i-j(do) = 3 L =i
Jj=1 0=69 0=6o Jj=1 6=6o 0=0¢
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00 min(j,t—1) j—k
0T (0) 073 9 t)
Py [89 (05 1i(do)
j=1 k=1 =60 1=0
t—1 e’}
= O((1 +1logt)>m>=d0=O= Ny (n, ;4 ¢, +ZO (1 4 log j)Tjmax(=do=Q)=1y, .
7j=1 Jj=t

For the second term in (D.87), by lemma D.4, (D.1), and assumption 3

.97 (0 ~ =, 97 (0 o, i
éé ) §j(do) =) éé ) i+ Zﬁt —j Z Hk > a(po)mj—i—k—i(do)
J=t 0=0o j=t 0=0o Jj=t =0, 1=0

Z ((1 + log j)*jmax(=do=O=1),, ]+ZO (1 + log j)8jmax(=do.=O)=1y,, —j-

Note that (D.88), (D.89) are non-zero only for the derivative w.r.t. d. For (D.88), it holds that
orylddo)| 4 = —J ™, see Robinson (2006, pp. 135-136). Thus

-1

R 75 (6o, )
TR

j=t k=0 ‘7

~ 0&-(d)

= 9&,_i(d
Xttt [ftagl( : a5

+§;m§jm .t Z o) )

0=0o

Z (1+1og )2 )me— J+ZO (1 +logj)*jmax(=do=O~1)e, .

by lemma D.2; Johansen and Nielsen (2010, lemma B.3), and assumption 3. For the first term in

(D.89), by lemmas D.2, D.3, Johansen and Nielsen (2010, lemma B.3), and assumption 3

t—1

o in(jztfl)

9&—j(d) 1(00) — Tx(60, )
' [Tj(QO)_Tj(QO;t)]T Zﬂt j FE—
J=1 6=6 J=1 k=1
00 min(j,t—1) j—k
omi_p_(d
F a2 o) - o, Y aulen) Ot
=0 k=0 1=0 0=0,
00 t—1
=3 O((1+10g )% )i+ > _ O((1 +logt)*m>(~do.m0O1)e,
Jj=1 j=1
+) O((1 +log j)P (=m0 T)e,

while for the second term in (D.89), by lemma D.2, Johansen and Nielsen (2010, lemma B.3), and
assumption 3

j—t—k

ZTJ (o) 22D zm]z o) +zmzw (00) Y a2tk
=t = =0

od
0=0, =00
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=3 0((1 +1og )% )m j+Zo ((1 +log j)*jmax(=do,=O=1y¢, .
=t j=t

Together, the results above prove lemma D.8. O

Lemma D.9. For v(0) as defined and (15) and 9:(0) as defined in (B.2), it holds that

foralli,j=1,...,q+ 2.

Proof of lemma D.9. The proof is analogous to the proof of lemma D.6 and thus is only summarized

briefly. It will be helpful to note that there exists a constant 0 < K < oo such that

Tk<9 t) _ K jmax(—d,—¢)—1
) 0 ((1 +log k)X k ) : (D.90)
() 0?7,(0,1) K A
_ 141 max(—d,—¢)—1 . D.91
0,00, 90,00, 0 ((1+1ogt) ) (D-91)

(D.90) can be seen directly from the proof of lemma D.4, as the second partial derivatives only
add a log-factor to the convergence rates in lemma D.4. (D.91) can be shown analogously to the

proof of lemma D.5, where again the second partial derivatives only add a log-factor to the conver-

gence rates in lemma D.5. To simplify the notation, define hgy, . = ZZ 11 8897’“699:) |9 905,5 k(do),

_ &t k(d t— 1 aTk Gt 85,5 k(d
hag ;) = k 1Tk(907 >89()89(])‘9 00’ stz = 2k=1 90z ‘0 90 905 ‘6:6 ’

as well as h3 tag) =

821 28 & (d) oo O1k( B, (d)
> he 190, )159(])’9 905'5 k(do), h4t<m> Ek:lTk(QO)ae(t>ae(J)’9 00 5.t = = Dk=1 agm ‘9 fo 50(]) |9 00"

The term of interest then can be written as
1. 0%0,(0)
= Z By (0p) =
n . .

t=1
= — Z’Ut 90 (il 3t hs3 6,5 > Z h3,t(i7j> (@(90) - Ut(00)>
ni4
th 90 <~ )
T Zf’t(eo ( St — Mo, 7>> *

o Z ot(fo) <h5 tGay ~ M8t

n

1 -
At — hagu )+ - - Z; hag, 5, (01(00) — ve(6o)) (D.92)
t=

Z hst,., (0t(60) — ve (o))

t=1

SRS

+

S|
M=

h57t(j7i) (,Dt(go) - Ut(eo)) )

t=1

and thus the different terms in (D.92) can be considered separately and will be shown to be o, (1).
Note that 0;(6y) adapted to the filtration .7-"5 is a MDS as explained in the proof of theorem 4.2, while
ﬁg,t(i Py B4,t(i P iL57t(U) are ffﬁl—measurable. Starting with the first term in (D.92), by plugging in
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h3¢<i,j> ’ h3¢<i,j>

LS 00 ser, o) = - S w3 L) (6wt~ i)
— t(00)(h3e; 5 — M3y, ;) = — (0o Y t—k(do) — &k (do
n P (4,5) (4,9) n P Py 80( )89(])
0%7,(6) 0%7,(0,1) ) .
+=> o(bo) S - &t—k(do) (D.93)
Z Z (39< 0906) |g_g,  P0@900) |,y

— ()
T Z”t 90 ' 90,00,

=v0

The latter two terms in (D.93) are MDS when adapted to ]_-té , as (04(0o), ]_—té ) is a stationary MDS

and as the other terms are ]-'f ;-measurable. By (D.90) and (D.91), > 72, 8(3(7)%9(]) ‘9 eogt x(do)
82Tk 0,t)

o2
as well as > f_ (W‘e 60~ 30,50 ‘9 90> & 1(do) are 0,(1). Hence, the latter two terms in
(D.93) are also 0,(1). In contrast, the first term in (D.93) is not a MDS. However, by the same

proof as for (D.58) (replacing the first partial derivative of 74 (0,t) by the second partial derivative

and noting that this only adds a log-factor to the convergence rate) it can also be shown to be
op(1). Thus, (D.93) is 0,(1). For the third term in (D.92), by plugging in ﬁ4,t(ij), hag .

liﬁt(ao)(ﬁ“ —hag, ;) = 1Zn:5t(90)§(7'k(90) — 7%(6o t))M
n — (4,5) (4,5) n — p 89(1)690)
0%_k(d)  0*6i(d)
Z Z 0990y 900904 ) |,_,

0?
+ — th 90 ZTk 90 ft)ake(())

0=0o

where the first and third term are MDS when adapted to .7-"5, as U(fp) is a MDS and the re-

g gt k(d) ‘
903005y 10=6

0p(1) by lemma D.2, and by Hualde and Robinson (2011, lemma 4). The first term is o,(1) since
(1%:(00) — (60, 1)) geft 8’“0 (d) |9 g, 18 0p(1) by lemma D.3. The second term can be shown to be o,(1)

maining term is ffﬁl—measurable. The third term is o,(1), because Y p2, 7% (6o) is

analogously to (D.64) by replacing the first partial derivatives of gt(d) with the second partial
derivatives, as this only adds a log-factor to the convergence rate, see Hualde and Robinson (2011,
lemma 4). For the fifth term in (D.92), similarly to (D.93) and (D.94)

13 O1e(00)|  0&_y(d
ﬁzvt(eo)(hf’:t(i,j) —hsp,) = th (00) Z 78%0 i %Qk'( )

= i k=t O () @) lo=p,

L 9r(6,1) (aét_k(d) agt_k(d>>
L1 th 00 _ (D.95)
= Y0 | \ 90 99G) ) 1os,
1 —\ (0m,(0)  9m(0,1) 01 (d)
+n2“t<90>z(ae. -0, T
t=1 k=1 (@) (4) =6, () 0=00
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where the first and third term are MDS as before. The first term is o0,(1) by lemma D.4, while
the third term is o0p(1) by lemma D.5. The second term can be shown to be o,(1) analogously to
(D.64) using (D.67), as the partial derivatives of 7;(6,t) only add a log-factor to the convergence
rates, see lemma D.4. Thus, (D.95) is also 0,(1). The second, fourth and sixth term in (D.92) can

be written as

n t—1
— Z Lty (0¢(Bo) — ve(6o)) Z Lt Z(é:tfk(do) — &—k(do)) (6o, 1)

+= Zhlt(mZ 7k(00) — 7(00,1))E1—x(do) + Zhlwsz (60)&:—r(do),

(D.96)

with | = 3,4,5. For [ = 3, (D.96) only differs from (D.71) as it contains the second partial
derivatives of 7 (6, ) in hs ¢ e However, they only add a log-factor to the convergence rates of the
first partial derivatives, see (D.90). For [ =4, (D.96) is almost identical to (D.78), where the only
difference is that the former considers the second partial derivatives of &(d) via h4,t<i,j>' Again,
the second partial derivatives only add a log-factor to the convergence rates in (D.78) (Hualde and
Robinson; 2011, lemma 4). For [ = 5, (D.96) is again almost identical to (D.78) but now includes
the first partial derivative of 7(6,t) via h57t(i,j)- As for the other terms, by lemma D.4 the derivative
again only adds a log-factor to the convergence rate of 74 (6,t). Thus, it follows directly from (D.71)
and (D.78), together with (D.90) and Hualde and Robinson (2011, lemma 4), that (D.96) is 0,(1).
The two remaining terms in (D.92) are 0,(1) by (D.95) and (D.96), as i, j can be interchanged.
This completes the proof.

O
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