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1 Introduction

The decomposition of time series into trend and cycle plays a key role in applied research. In

modern trend-cycle models, the long-run dynamics, particularly the integration order of the trend,

must be specified prior to estimation, which opens the door to model specification errors. This

paper introduces an encompassing trend-cycle model that treats the integration order as unknown.

It offers a flexible, robust, and data-driven approach to decomposing time series into trend and

cycle, and is termed the fractional unobserved components model.1

The literature on trend-cycle decompositions has been shaped by the seminal works of Beveridge

and Nelson (1981), Harvey (1985), Clark (1987), and Hodrick and Prescott (1997). Since then, a

variety of unobserved components (UC) models have been proposed, and often the integration order

of the trend was subject to debate. The field is divided into two main groups, one assuming the

trend to be integrated of order one in the spirit of Beveridge and Nelson (1981) and Harvey (1985),

the other group preferring an integration order of two as suggested by Clark (1987) and Hodrick

and Prescott (1997). Since empirical results are sensitive to the choice of the integration order, a

data-driven model selection procedure would clearly be beneficial. However, the literature to date

lacks an encompassing model allowing for trends of different memory. Thus, model specification is

left open to the applied researcher, who often faces a trade-off between the economic plausibility

of the model specification and the economic plausibility of the resulting decomposition. Little

is known about the consequences of model misspecification on the estimates of the unobserved

components. In addition, the asymptotic estimation theory is not fully developed for UC models,

particularly when shocks are not necessarily Gaussian.

This paper aims to bridge these gaps by introducing a novel UC model that specifies the

stochastic trend component xt as a fractionally integrated process of order d ∈ R+, denoted as

xt ∼ I(d). It allows for random walk trend components (as suggested among others by Beveridge

and Nelson; 1981; Harvey; 1985; Morley et al.; 2003) for d = 1, but also includes quadratic stochastic

trend specifications (e.g. those of Clark; 1987; Hodrick and Prescott; 1997; Oh et al.; 2008) for d = 2.

Since the integration order d can take any value on the positive real line and enters the model as an

unknown parameter to be estimated, the model seamlessly links integer-integrated specifications.

By including non-integer d, it allows for even more general patterns of persistence between the

integer cases. Besides the fractional trend, the fractional UC model includes a cyclical component

that encompasses the ARMA specifications common in the UC literature, but also allows for a

broader class of processes such as e.g. the exponential model of Bloomfield (1973). Long- and

short-run innovations are assumed to be martingale difference sequences, which is somewhat more

general than the usual Gaussian white noise assumption.

While the UC literature has mostly considered integer-integrated specifications, there are some

generalizations to non-integer integration orders in the state space literature: For asymptotically

stationary processes (i.e. d < 1/2) Chan and Palma (1998, 2006), Palma (2007) and Grassi and

1Note that the literature has come up with a variety of names for unobserved components models, such as struc-
tural time series models and trend-cycle models among others. To avoid confusion, the term unobserved components
model will be used for any model that specifies one or more time series as a function of latent components and assigns
an interpretation to these components by imposing assumptions on their spectra.
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de Magistris (2014) consider approximations to long memory processes in state space form by

truncating either the autoregressive or the moving average representation of the fractional differ-

encing polynomial. Their models have been found valuable for realized volatility modeling (see

Ray and Tsay; 2000; Chen and Hurvich; 2006; Harvey; 2007; Varneskov and Perron; 2018) but

exclude non-stationary stochastic trends that are indispensable for general UC models. Recently,

Hartl and Jucknewitz (2022) studied ARMA approximations to fractionally integrated processes

in state space form, also including the non-stationary domain. So far, the literature has focused

on approximate representations of fractionally integrated processes to reduce the computational

burdens of the Kalman filter. In contrast, this paper suggests an exact state space representation

and provides a closed-form solution to the Kalman filter, thereby avoiding the computationally

costly Kalman recursions.

To also assess the theoretical properties of parameter estimation, this paper derives the estima-

tion theory for both the unobserved components and the model parameters. In line with the UC

literature, the unobserved components are estimated by minimizing the objective function of the

Kalman filter. While the literature typically relies on iterative estimates for trend and cycle via

the Kalman recursions, I derive an analytical solution to the optimization problem of the Kalman

filter.2 Since iterative and analytical solution differ only in the way they are computed, both ap-

proaches yield the minimum variance linear unbiased estimator for trend and cycle (Durbin and

Koopman; 2012, lemma 2). However, using the analytical solution is computationally less expen-

sive for the fractional UC model. As an additional advantage, it provides a closed-form solution

to the objective function of the conditional sum-of-squares (CSS) estimator, which is used to esti-

mate the model parameters. Under the assumption that long- and short-run shocks are stationary

martingale difference sequences, the CSS estimator is shown to be consistent. Under the somewhat

stronger assumption that the prediction error of the Kalman filter is also a martingale difference

sequence, the CSS estimator is shown to be asymptotically normally distributed.

The proofs are complicated by non-ergodicity of the prediction errors and non-uniform conver-

gence of the objective function. The latter is caused by a prediction error that is stationary when

the estimate for d is close to the true value, while it becomes non-stationary when the estimate is

too far off. While all proofs are carried out for the conditional sum-of-squares (CSS) estimator,

they are shown to extend seamlessly to the quasi-maximum likelihood (QML) estimator that is

typically used in the UC literature. Furthermore, estimation results are shown to also hold for

models with deterministic terms and correlated trend and cycle innovations (as e.g. in Balke and

Wohar; 2002; Morley et al.; 2003). The finite sample properties of the CSS and QML estimators are

evaluated in a Monte Carlo study, which supports the results on consistency for both estimators.

In addition, the parameter estimates for the integration order outperform the exact local Whittle

estimator of Shimotsu and Phillips (2005), which is biased by the cyclical fluctuations.

An application to monthly sea surface temperature anomalies illustrates the benefits from the

fractional UC model: Temperature anomalies are estimated to be integrated of order around 1.75,

and the hypothesis of an integer integration order is rejected. The resulting trend-cycle decompo-

2Analytical solutions to the Kalman filter have been derived for trend plus noise models by Burman and Shumway
(2009) and Chang et al. (2009), where the trend is a random walk and the cycle is white noise.
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sition finds trend temperature anomalies to be increasing since the mid of the 20th century, while

cyclical temperature anomalies closely match the Oceanic Niño Index.

The rest of the paper is organized as follows: Section 2 introduces the fractional UC model and

discusses the underlying assumptions. Section 3 discusses trend and cycle estimation, while section

4 details parameter estimation. Generalizations of the fractional UC model are discussed in section

5. Section 6 examines the finite sample properties of the proposed methods in a Monte Carlo study,

while section 7 applies the fractional UC model to sea surface temperature anomalies. Section 8

concludes. The proofs for consistency and asymptotic normality are contained in the appendix.

The code for this paper, as well as a computationally efficient R package containing all necessary

functions for fractional UC models, is available at https://github.com/tobiashartl/fracUCM.

2 Model

While the literature on unobserved components (UC) models is vast, it builds on a simple model

that decomposes an observable time series {yt}nt=1 into unobserved trend xt and cycle ct

yt = xt + ct. (1)

ct and xt are distinguished by their different spectral densities: The cycle (or short-run component)

ct is assumed to follow a mean zero stationary process to capture the transitory features of yt. The

trend (or long-run component) xt is characterized by an autocovariance function that decays more

slowly than with an exponential rate. It models the persistent features of the observable series and

is allowed to be non-stationary.

I generalize state-of-the-art UC models by modeling xt as a fractionally integrated process of

unknown memory d ∈ R+

∆d
+xt = ηt. (2)

The fractional difference operator ∆d
+ depends only on the parameter d and controls the memory

of xt. Without subscript, it exhibits a polynomial expansion in the lag operator L of order infinite

∆d = (1− L)d =
∞∑
j=0

πj(d)Lj , πj(d) =


j−d−1
j πj−1(d) j = 1, 2, ...,

1 j = 0,
(3)

where the weights πj(d) are determined recursively. The motivation behind (2) and (3) is that the

higher d, the greater the effect of a past shock ηt−j on xt, and the more differencing is required to

eliminate the persistent impact of the past shock via (2). For this reason xt ∼ I(d) is said to have

long memory whenever d > 0 (see Hassler; 2019, for more details). The +-subscript in (2) denotes

the truncation of an operator at t ≤ 0, ∆d
+xt = ∆dxt1(t ≥ 1) =

∑t−1
j=0 πj(d)xt−j , where 1(t ≥ 1)

is the indicator function that takes the value one for positive subscripts of xt−j , otherwise zero.

The truncated fractional difference operator reflects the type II definition of fractionally integrated

processes (Marinucci and Robinson; 1999) and is required to treat the asymptotically stationary
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case alongside the non-stationary case.

Equation (2) encompasses several trend specifications in the literature: For d = 1, it nests the

random walk trend model as considered by Harvey (1985), Balke and Wohar (2002), and Morley

et al. (2003) among others. For d = 2, one has the double-drift model of Clark (1987) and Oh

et al. (2008), but also the filter of Hodrick and Prescott (1997, HP filter in what follows) as will

become clear. For d ∈ N, the model of Burman and Shumway (2009) is obtained. Allowing for

d ∈ R+ seamlessly links these integer-integrated models and allows for far more general dynamics

of the trend: For 0 < d < 1/2, it covers stationary and strongly persistent processes as considered

by Ray and Tsay (2000), Chen and Hurvich (2006), and Varneskov and Perron (2018) for realized

volatility modeling. For 1/2 < d < 1, it allows for non-stationary but mean-reverting processes,

while d ≥ 1 yields non-stationary non-mean-reverting processes that are indispensable for trend-

cycle decompositions of macroeconomic variables among others. Since d enters the model as an

unknown parameter to be estimated, the model allows for a data-driven choice of d and provides

statistical inference on the appropriate specification of UC models.

Turning to the cyclical component, I treat ct as any short memory process that is independent

of xt and may depend non-linearly on a parameter vector ϕ

ct = a(L,ϕ)εt =
∞∑
j=0

aj(ϕ)εt−j . (4)

The parametric form of a(L,ϕ) is assumed to be known. For example, ct may be an ARMA process

as typically assumed in the UC literature, but the specification generally captures a broader class

of processes, e.g. the exponential model of Bloomfield (1973).

In what follows, the model (1), (2), and (4) is analyzed under the following assumptions:

Assumption 1 (Errors). The errors εt, ηt are stationary and ergodic with finite moments up

to order four and absolutely summable autocovariance function. For the joint σ-algebra Ft =

σ((ηs, εs), s ≤ t), it holds that E(εt|Ft−1) = 0, E(ε2t |Ft−1) = σ2
ε , and E(ηt|Ft−1) = 0, E(η2

t |Ft−1) =

σ2
η. Furthermore, conditional on Ft−1, the third and fourth moments of εt, ηt are finite and equal

their unconditional moments. Finally, εt and ηt are independent.

Assumption 2 (Parameters). Collect all model parameters in ψ = (d, σ2
η, σ

2
ε , ϕ

′)′, and let Ψ = D×
Ση ×Σε × Φ denote the parameter space of ψ ∈ Ψ , where D = {d ∈ R|0 < dmin ≤ d ≤ dmax <∞},
Ση = {σ2

η ∈ R|0 < σ2
η,min ≤ σ2

η ≤ σ2
η,max < ∞}, Σε = {σ2

ε ∈ R|0 < σ2
ε,min ≤ σ2

ε ≤ σ2
ε,max < ∞},

and Φ ⊆ Rq is convex and compact. Then for the true parameters ψ0 = (d0, σ
2
η,0, σ

2
ε,0, ϕ

′
0)′ it holds

that ψ0 ∈ Ψ .

Assumption 1 allows for conditionally homoscedastic martingale difference sequences (MDS) ηt

and εt. This is somewhat more general than the UC literature, which typically assumes Gaussian

white noise disturbances (e.g. in Morley et al.; 2003). The generalization is of great practical

importance given the applications of UC models in macroeconomics and finance. Independence of

the shocks is assumed to simplify the derivation of the asymptotic estimation theory in section 4,

and can be relaxed to allow for correlated innovations, see subsection 5.2.
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Assumption 2 allows for both, stationary and non-stationary fractionally integrated trend com-

ponents, and for an arbitrarily large interval d ∈ D. Positive integration orders guarantee that xt

is a long-run component, and that it can be distinguished from ct based on its spectrum.

Assumption 3 (Stability of a(L,ϕ)). For all ϕ ∈ Φ and all z in the complex unit disc {z ∈ C :

|z| ≤ 1} it holds that

(i) a0(ϕ) = 1, and
∑∞

j=0 |aj(ϕ)| is bounded and bounded away from zero,

(ii) each element of a(eiλ, ϕ) is differentiable in λ with derivative in Lip(ζ) for any ζ > 1/2,

(iii) a(z, ϕ) =
∑∞

j=0 aj(ϕ)zj is continuously differentiable in ϕ, and the partial derivatives ȧ(z, ϕ) =∑∞
j=1

∂aj(ϕ)
∂ϕ zj =

∑∞
j=1 ȧj(ϕ)zj satisfy ȧj(ϕ) = O(j−1−ζ), and ∂a0(ϕ)

∂ϕ = 0.

Under assumption 3, a(L,ϕ)−1 = b(L,ϕ) =
∑∞

j=0 bj(ϕ)Lj exists, is well defined, and the sum∑∞
j=0 |bj(ϕ)| is bounded and bounded away from zero. By the Lipschitz condition it holds that

aj(ϕ) = O(j−1−ζ), bj(ϕ) = O(j−1−ζ), uniformly in ϕ ∈ Φ.

The rate for aj(ϕ) follows directly from assumption 3(ii), while that for bj(ϕ) follows from Zygmund

(2002, pp. 46 and 71). The convergence rate for the partial derivative ȧj(ϕ) is a direct consequence

of compactness of Φ and continuity of ∂aj(ϕ)/∂ϕ′. Assumption 3 imposes some smoothness on the

linear coefficients in a(L,ϕ), and thus also on b(L,ϕ). It is satisfied by any stationary and invertible

ARMA process. For ARFIMA models, the asymptotic estimation theory is well established under

assumptions similar to 1, 2, and 3, see Hualde and Robinson (2011) and Nielsen (2015).

3 Filtering and smoothing

The system introduced in (1), (2), and (4) forms a state space model, where (1) is the measurement

equation and (2), (4) are the state equations for trend and cycle.3 This opens the way to the Kalman

filter, a powerful set of algorithms for filtering, predicting, and smoothing the latent components

xt and ct, but also for parameter estimation. In this section, I derive an analytical solution to the

optimization problem of the Kalman filter and smoother. As will become clear at the end of this

section, the analytical solution has two decisive advantages over the usual recursive algorithm: it

is computationally more efficient, and it greatly simplifies the asymptotic analysis of the objective

function for parameter estimation. In addition, it encompasses the HP filter.

Note that yt is only observable for t ≥ 1. Thus, trend, cycle, and parameters can only be

estimated based on a truncated representation of the cyclical lag polynomial. To arrive at a

feasible representation, define the truncated polynomial b+(L,ϕ) via b+(L,ϕ)ct = b(L,ϕ)ct1(t ≥
1) =

∑t−1
j=0 bj(ϕ)ct−j . Furthermore, collect xt:1 = (xt, ..., x1)′ and ct:1 = (ct, ..., c1)′, and define the

3Section 5 outlines the state space representation and illustrates the dimensions of the system matrices. For
further details on state space models and the Kalman filter, see Harvey (1989, ch. 3).
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t× t differencing matrix Sd,t and the t× t coefficient matrix Bϕ,t

Sd,t =


π0(d) π1(d) · · · πt−1(d)

0 π0(d) · · · πt−2(d)
...

...
. . .

...

0 0 · · · π0(d)

 , Bϕ,t =


b0(ϕ) b1(ϕ) · · · bt−1(ϕ)

0 b0(ϕ) · · · bt−2(ϕ)
...

...
. . .

...

0 0 · · · b0(ϕ)

 , (5)

such that Sd,txt:1 = (∆d
+xt, ...,∆

d
+x1)′ and Bϕ,tct:1 = (b+(L,ϕ)ct, ..., b+(L,ϕ)c1)′. Sd,t is defined

analogously to the integer-integrated differencing matrix of Burman and Shumway (2009), and it

holds that Sd,tS−d,t = I, and S0,t = I. In the following, I show the closed-form solutions for the

updating step of the Kalman filter to be given by

x̂t:1(yt:1, ψ) =
(
B′ϕ,tBϕ,t + νS′d,tSd,t

)−1
B′ϕ,tBϕ,tyt:1 = x̂t:1(yt:1, θ), (6)

ĉt:1(yt:1, ψ) = ν
(
B′ϕ,tBϕ,t + νS′d,tSd,t

)−1
S′d,tSd,tyt:1 = ĉt:1(yt:1, θ), (7)

where the fraction ν = σ2
ε /σ

2
η controls for the variance ratio of the innovations, x̂t:1(yt:1, ψ) =

(x̂t(yt:1, ψ), ..., x̂1(yt:1, ψ))′, ĉt:1(yt:1, ψ) = (ĉt(yt:1, ψ), ..., ĉ1(yt:1, ψ))′ collect the filtered trend and

cycle, and θ = (d, ν, ϕ′)′. (6) and (7) are identical to the recursive solutions from the updating

equation of the Kalman filter. The one-step ahead predictions for xt+1 and ct+1 are obtained by

plugging (6) and (7) into the state equations (2) and (4)

x̂t+1(yt:1, θ) = −
(
π1(d) · · · πt(d)

)
x̂t:1(yt:1, θ), (8)

ĉt+1(yt:1, θ) = −
(
b1(ϕ) · · · bt(ϕ)

)
ĉt:1(yt:1, θ). (9)

Together, the updating equations (6), (7) and the prediction equations (8), (9) form the Kalman

filter, see Harvey (1989, ch. 3.2) for details. Finally, smoothed estimates for xt and ct can be

obtained from (6), (7) by setting t = n. They are identical to those obtained by the Kalman

smoother.

To prove (6) and (7), I first consider the objective function of the Kalman filter, which follows

from maximizing the quasi-log likelihood of (1), (2), and (4) with respect to xt:1 = (xt, ..., x1)′,

ct:1 = (ct, ..., c1)′ given yt:1 = (yt, ..., y1)′ and ψ = (d, σ2
η, σ

2
ε , ϕ

′)′. This is the same as minimizing

x̂t:1(yt:1, ψ) = arg min
xt:1

1

t

t∑
j=1

{
1

σ2
ε

[b+(L,ϕ)(yj − xj)]2 +
1

σ2
η

(
∆d

+xj

)2
}
, (10)

ĉt:1(yt:1, ψ) = arg min
ct:1

1

t

t∑
j=1

{
1

σ2
η

[
∆d

+(yj − cj)
]2

+
1

σ2
ε

(b+(L,ϕ)cj)
2

}
. (11)

Here, the first residual in (10) stems from plugging (4) into the measurement equation and solving

for εj , while the second is from (2). Analogously, the first term in (11) follows from inserting (2) into

(1) and solving for ηj , while the second follows from solving (4) for εj . Constant terms are omitted.

As xt and ct are estimated based on all observations until period t, it holds that x̂t:1(yt:1, ψ) =
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yt:1 − ĉt:1(yt:1, ψ). If ηt and εt are assumed to be Gaussian, the optimization problems in (10) and

(11) yield the conditional expectations x̂t:1(yt:1, ψ) = Eψ(xt:1|yt:1) and ĉt:1(yt:1, ψ) = Eψ(ct:1|yt:1),

see Durbin and Koopman (2012, lemma 1), where the expected value operator Eψ(zt) of an arbitrary

random variable zt denotes that expectation is taken with respect to the distribution of zt given

ψ. If ηt, εt are not normally distributed, the optimization problems (10) and (11) remain valid.

The filtered x̂t:1(yt:1, ψ), ĉt:1(yt:1, ψ) are the projections of xt:1 and ct:1 on the span of yt:1, and are

the minimum variance linear unbiased estimators for xt:1 and ct:1 given the observable information

y1, ..., yt (Durbin and Koopman; 2012, lemma 2). For t = n, d = 2, b(L,ϕ) = 1, ν = σ2
ε /σ

2
η, (10)

becomes the HP filter with ν being the tuning parameter. Thus, the HP filter constitutes a special

case of the fractional UC model.

From (5), a matrix representation of (10) and (11) follows

x̂t:1(yt:1, ψ) = arg min
xt:1

1

t

{
1

σ2
ε

‖Bϕ,t(yt:1 − xt:1)‖2 +
1

σ2
η

x′t:1S
′
d,tSd,txt:1

}
, (12)

ĉt:1(yt:1, ψ) = arg min
ct:1

1

t

{
1

σ2
η

‖Sd,t(yt:1 − ct:1)‖2 +
1

σ2
ε

c′t:1B
′
ϕ,tBϕ,tct:1

}
, (13)

where ‖·‖ denotes the Euclidean norm. Calculating the derivative of (12) and (13) and solving

for xt and ct yields (6) and (7). Note that (6) and (7) do not depend on the exact magnitudes

of σ2
η and σ2

ε , but only on their ratio ν, 0 < ν < ∞. Thus, for any positive constant K > 0, the

parameter vector ψ∗ = (d,Kσ2
η,Kσ

2
ε , ϕ

′)′ yields the same estimates x̂t:1(yt:1, ψ
∗), ĉt:1(yt:1, ψ

∗) as

(6) and (7). By defining the parameter vector θ = (d, ν, ϕ′)′, one has x̂t:1(yt:1, ψ) = x̂t:1(yt:1, θ)

and ĉt:1(yt:1, ψ) = ĉt:1(yt:1, θ). This will be helpful for parameter estimation in section 4, since the

conditional sum-of-squares estimator is not identified for ψ. Also, using θ reduces the dimension of

the parameter vector, which speeds up the optimization. However, ψ can also be estimated directly

by maximum likelihood as will be shown in subsection 5.3.

From the filtered latent components in (6) and (7), the one-step ahead predictions for xt+1 and

ct+1 follow immediately by plugging (6) and (7) into the state equations (2) and (4). This yields

(8) and (9). While (6), (7), (8), and (9) are required for parameter estimation, as discussed in

the next section, estimates for xt and ct typically reported are the projections of xt and ct on the

span of y1, ..., yn, i.e. on the full sample information. They follow immediately from (6) and (7) by

setting t = n, and are identical to the Kalman smoother.

Note that the filtered, predicted and smoothed xt and ct can be computed either via the

analytical solution above or recursively by executing the Kalman recursions (see Harvey; 1989, ch. 3,

for the latter). Both approaches yield identical results and only differ in the way they are computed.

However, the analytical solution has two decisive advantages over the traditional recursions: (i) It is

computationally superior for fractional trends. As the state vector of the fractional trend in (2) is of

dimension n−1, the dimension of the state vector for both trend and cycle is of dimension m ≥ n−1.

Thus, each recursion of the Kalman filter involves multiple multiplications of (m×m)-dimensional

covariance and system matrices, and each multiplication requires 2m3 −m2 flops (Hunger; 2007).

The analytical solution also requires the expensive computation of an (n× n) inverse, however the

underlying matrix is symmetric, positive definite, and thus the Cholesky decomposition can be used
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to reduce the complexity to n3 + n2 + n flops per iteration (Hunger; 2007). Since m ≥ n − 1, the

analytical solution speeds up the computation considerably. This allows to run the Monte Carlo

studies in section 6, which would otherwise be computationally infeasible. (ii) The solution allows

to derive an objective function for parameter estimation that does not depend on the Kalman

recursions and is thus easier to analyze. As usual, the objective function for parameter estimation

is set up based on the one-step ahead prediction error, that is obtained by plugging (8) and (9)

into the measurement equation (1). Since (8) and (9) depend only on the observable y1, ..., yt as

well as on the model parameters, the objective function does not depend on a recursive solution for

the filtered trend and cycle. This greatly simplifies the asymptotic theory for parameter estimation

in section 4, since the convergence rates of all coefficients are either known, or can be derived

immediately.

4 Parameter estimation

To estimate θ0 = (d0, ν0, ϕ
′
0)′, denote Θ = D × Σν × Φ the respective parameter space, where

Σν = {ν ∈ R|0 < νmin ≤ ν ≤ νmax < ∞}, and D, Φ as defined in assumption 2. By assumption

2, Θ is convex and compact. As usual in the state space literature, I set up the objective function

for parameter estimation based on the one-step ahead forecast error for yt+1, denoted as vt+1(θ) =

yt+1 − x̂t+1(yt:1, θ)− ĉt+1(yt:1, θ). By plugging in (8) and (9), vt+1(θ) can be represented as

vt+1(θ) = ∆d
+yt+1+ν (b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d)) (B′ϕ,tBϕ,t + νS′d,tSd,t)

−1S′d,tSd,tyt:1. (14)

vt+1(θ) depends on the fractionally differenced observable yt+1, as well as on past Sd,tyt:1 =

(∆d
+yt, ...,∆

d
+y1)′, weighted by the 1× t coefficient vector on the right-hand side of (14) that fully

depends on θ. Let ξt+1(d) = ∆d
+yt+1 = ∆d−d0

+ ηt+1+∆d
+ct+1 and ξt:1(d) = (ξt(d) · · · ξ1(d))′ = Sd,tyt:1

denote the fractionally differenced yt+1 and yt:1 respectively. Then, (14) can be written as

vt+1(θ) = ξt+1(d) +

t∑
j=1

τj(θ, t)ξt+1−j(d) =

t∑
j=0

τj(θ, t)ξt+1−j(d), (15)

where τ0(θ, t) = 1, and (τ1(θ, t) · · · τt(θ, t)) = ν(b1(ϕ)−π1(d) · · · bt(ϕ)−πt(d))(B′ϕ,tBϕ,t+νS
′
d,tSd,t)

−1S′d,t
collects the t coefficients belonging to ξt(d), ..., ξ1(d) in (15). The conditional sum-of-squares (CSS)

estimator for θ0 follows from minimizing the sum of squared forecast errors

θ̂ = arg min
θ∈Θ

Q(y, θ), Q(y, θ) =
1

n

n∑
t=1

v2
t (θ). (16)

Since the objective function is proportional to the exponent in the quasi-likelihood function, (16)

is similar to the quasi-maximum likelihood estimator that is typically used in the state space

literature, see e.g. Durbin and Koopman (2012, ch. 7). While the latter allows for a time-varying

variance of the prediction error, (16) implicitly assumes a constant variance of the prediction error.

However, as subsection 5.3 discusses in greater detail, the filtered prediction error variance of the
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fractional UC model converges to its steady state solution at an exponential rate. Thus, (16) and

quasi-maximum likelihood estimation are asymptotically equivalent. Differences arise only due to

a different weighting of prediction errors at the very beginning of the sample. However, (16) is

computationally much simpler, because it avoids the Kalman recursions for the prediction error

variance. Furthermore, parameter estimation via the steady-state Kalman filter is identical to (16)

after some burn-in period, see Harvey (1989, ch. 4.2.2).

While the asymptotic theory for CSS estimation is well established for autoregressive fraction-

ally integrated moving average (ARFIMA) models, see Hualde and Robinson (2011) and Nielsen

(2015), only little is known about the asymptotic theory for unobserved components models of such

generality. For the sub-class of I(1) UC models with Gaussian white noise shocks ηt and εt, the

asymptotic theory can be inferred from the ARIMA literature (Harvey and Peters; 1990; Morley

et al.; 2003). Unfortunately, no such results are available for UC models with fractional trends,

so the asymptotic theory for parameter estimation of fractional UC models must be derived from

scratch. While the proofs in this section are given for the (simpler) CSS estimator, it is shown in

subsection 5.3 that they also apply to the traditional quasi-maximum likelihood estimator. Due

to the encompassing nature of the fractional UC model, the results below also hold for CSS and

quasi-maximum likelihood estimation of all sub-classes of UC models such as e.g. integer-integrated

models with MDS shocks.

Theorem 4.1. For the model in (1), (2), and (4), and under assumptions 1 to 3, the estimator θ̂

as defined via (16) is consistent, i.e. θ̂
p−→ θ0 as n→∞.

The proof is contained in Appendix B. While consistency ultimately follows from a uniform

weak law of large numbers (UWLLN), showing that the UWLLN holds is complicated by the

non-uniform convergence of the objective function within Θ, as well as by the non-ergodicity of

the prediction errors in (14): First, as can be seen from (14), the prediction errors are I(d0 − d),

and thus are asymptotically stationary for d0 − d < 1/2, and otherwise non-stationary. In the

former case, a UWLLN can be shown to hold for the objective function, while in the latter case a

functional central limit theorem holds under some additional assumptions. Consequently, uniform

convergence of the objective function fails around the point d = d0 − 1/2. Following the idea of

Nielsen (2015), I partition the parameter space D into three compact subsets, one where vt(θ) is

asymptotically non-stationary, one for stationary vt(θ), and an overlapping subset. Next, whenever

θ is not contained in the stationary region of the parameter space, I show that the objective function

approaches infinity with probability converging to 1 as n → ∞. Thus, the relevant region of the

parameter space reduces asymptotically to the region where d0−d < 1/2 holds, and where uniform

convergence of the objective function is not hindered.

Second, even within the asymptotically stationary region of the parameter space, the forecast

errors are non-ergodic, as can be seen from (14) and (15): The truncated fractional differencing

polynomial ∆d
+ includes more lags as t increases, and thus ξt(d) = ∆d−d0

+ ηt + ∆d
+ct is non-ergodic.

In addition, τj(θ, t) in (15) depends on t. Consequently, even for d0 − d < 1/2, a law of large

numbers for stationary and ergodic series does not apply directly to vt(θ). I tackle this problem by

showing that the difference between the prediction error in (14), and the untruncated and ergodic

9



ṽt(θ) =
∑∞

j=0 τj(θ)ξ̃t−j(d), is asymptotically negligible in probability, where ξ̃t(d) = ∆d−d0ηt+∆dct

is the untruncated residual, while the coefficients τj(θ) stem from the ∞-vector (τ1(θ), τ2(θ) · · · ) =

ν(b1(ϕ) − π1(d), b2(ϕ) − π2(d), · · · )(B′ϕ,∞Bϕ,∞ + νS′d,∞Sd,∞)−1S′d,∞, and τ0(θ) = 1. Since ṽt(θ) is

stationary and ergodic within the stationary region of the parameter space, it follows that a weak

law of large numbers applies to the objective function. The final part of the proof is to strengthen

pointwise convergence in probability to weak convergence, which yields the desired result of theorem

4.1.

With a consistent parameter estimator at hand, I next derive the asymptotic distribution of

the CSS estimator. For this purpose, assumption 3 needs to be strengthened.

Assumption 4. For all z in the complex unit disc {z ∈ C : |z| ≤ 1}, it holds that a(z, ϕ) is three

times continuously differentiable in ϕ on the closed neighborhood Nδ(ϕ0) = {ϕ ∈ Φ : |ϕ− ϕ0| ≤ δ}
for some δ > 0, and the derivatives satisfy

∂2aj(ϕ)
∂ϕ(k)∂ϕ(l)

= O(j−1−ζ), and
∂3aj(ϕ)

∂ϕ(k)∂ϕ(l)∂ϕ(m)
= O(j−1−ζ),

for all entries ϕ(k), ϕ(l), ϕ(m) of ϕ.

Assumption 4 is similar to assumption E of Nielsen (2015), and strengthens the smoothness

conditions of the linear coefficients in a(L,ϕ). It ensures absolute summability of the partial

derivatives, which is used to prove uniform convergence of the Hessian matrix and thus to evaluate

the Hessian matrix at θ0 in the Taylor expansion of the score. The convergence rates of the (second

and third) partial derivatives are a direct consequence of compactness of Nδ(ϕ0) together with

continuity of the partial derivatives. Assumption 4 still includes the class of stationary ARMA

processes, and even allows for a slower rate of decay of the autocovariance function.

Assumption 5. The true prediction error of the untruncated process ṽt(θ0) is a MDS when adapted

to the filtration F ξ̃t = σ(ξ̃s, s ≤ t), where ξ̃s = ξ̃s(d0).

Assumption 5 can be motivated as follows: As shown in the proof of theorem 4.1, the prediction

error of the Kalman filter converges to the untruncated, stationary and ergodic ṽt(θ0) = vt(θ0) +

op(1) as t→∞, while ∆d0
+ yt = ξt(d0) = ξ̃t + op(1) as t→∞, and thus the (relevant fraction) of the

filtration F ξ̃t asymptotically equals the filtration generated by the ∆d0
+ ys, 1 ≤ s ≤ t. Consequently,

assumption 5 requires the prediction error of the Kalman filter to converge to a MDS when adapted

to a filtration that asymptotically is equal to the filtration generated by the differenced, observable

variables. For assumption 5 to be satisfied, the one-step ahead forecasts for trend and cycle in

(6) and (7) must converge to their expectations conditional on F ξ̃t . Since ṽt(θ0) plays the role of

the (asymptotic) residual for fractional UC models, assumption 5 fits well to the usual assumption

of MDS residuals for CSS estimation, see e.g. Hualde and Robinson (2011), Nielsen (2015), and

Hualde and Nielsen (2020). In the UC literature, Dunsmuir (1979, ass. C2.3) imposes the same

assumption for his stationary signal plus noise model, but also discusses the possibility of relaxing

the assumption (see Dunsmuir; 1979, pp. 502f). Trivially, assumption 5 is satisfied if long- and

short-run innovations are Gaussian.

Theorem 4.2. For the model in (1), (2), and (4), under assumptions 1 to 5, the estimator θ̂

as defined via (16) is asymptotically normally distributed, i.e.
√
n
(
θ̂ − θ0

)
d−→ N(0, σ2

v,0Ω−1
0 ) as
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n → ∞, with σ2
v,0 = limt→∞Var(vt(θ0)) = Var(ṽt(θ0)), and Ω0 has the (i, j)-th entry Ω0(i,j) =

E
(
∂ṽt(θ)
∂θ(i)

∣∣
θ=θ0

∂ṽt(θ)
∂θ(j)

∣∣
θ=θ0

)
, i, j = 1, ..., q + 2.

The proof of theorem 4.2 is contained in Appendix C. As usual, the asymptotic distribution of

the CSS estimator is inferred from a Taylor expansion of the score function around θ0. Analogous

to Robinson (2006) and Hualde and Robinson (2011), it is first shown that the normalized score

at θ0 is asymptotically equivalent to the score function of the untruncated, stationary and ergodic

residual
√
n(∂Q̃(y, θ)/∂θ)

∣∣
θ=θ0

= (2/
√
n)
∑n

t=1 ṽt(θ0)(∂ṽt(θ)/∂θ)
∣∣
θ=θ0

. Next, a UWLLN is shown

to hold for the Hessian matrix, so that it can be evaluated at θ0 in the Taylor expansion, and the

difference between the truncated and untruncated Hessian matrix is shown to be asymptotically

negligible in probability. Therefore, both the score and the Hessian matrix in the Taylor expansion

can be replaced by their untruncated counterparts. While a weak law of large numbers applies

to the untruncated Hessian matrix, under assumption 5 a central limit theorem for martingale

difference sequences applies to the score and yields the asymptotic distribution. Finally, while

theorem 4.2 does not give an analytical expression for the covariance matrix of the CSS estimator,

it shows that Ω−1
0 can by estimated via the numerical Hessian matrix.

5 Generalizations

One key advantage of the fractional UC model is its state space representation: It makes the

Kalman filter and smoother applicable, enables quasi-maximum likelihood estimation of the model

parameters, allows to diffusely initialize the filter, and to seamlessly add additional structural com-

ponents to the model. In addition, several useful methods and generalizations become available

that are beyond the scope of this paper, such as frequency-domain optimization, additional observ-

able explanatory variables, time-varying and nonlinear models, and mixed-frequency models among

others; see Harvey (1989) for an overview. In this section, I outline some generalizations of the frac-

tional UC model that are of immediate applied relevance: Subsection 5.1 introduces deterministic

components to the model, while subsection 5.2 allows for correlated trend and cycle innovations.

Subsection 5.3 generalizes parameter estimation to the quasi-maximum likelihood estimator. For

all three modifications, the asymptotic results of section 4 are shown to remain valid. However,

before turning to the three generalizations, I first introduce the state space representation of the

fractional UC model.

The basic state space representation has the form

yt = Zαt + ut, (17)

αt = Tαt−1 +Rζt, (18)

where the states may be partitioned into αt = (α
(x)′

t , α
(c)′

t , α
(r)′

t )′, with (n − 1)-vectors for trend

α
(x)
t = (xt, xt−1, ..., xt−n+2)′, and cycle α

(c)
t = (ct, ct−1, ..., ct−n+2)′. The observation matrix is

Z = (Z(x), Z(c), Z(r)), where Z(x) = (1, 0, ..., 0), Z(c) = (1, 0, ..., 0) are (n − 1)-dimensional row

vectors picking the first entry of α
(x)
t and α

(c)
t . For the transition equation (18), one has T =
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diag(T (x), T (c), T (r)), R = diag(R(x), R(c), R(r)),

T (x) =


−π1(d) −π2(d) · · · −πn−1(d)

1 0
...

. . .
...

0 · · · 1 0

 , T (c) =


−b1(ϕ) −b2(ϕ) · · · −bn−1(ϕ)

1 0
...

. . .
...

0 · · · 1 0

 ,

and R(x) = (1, 0, ..., 0)′, R(c) = (1, 0, ..., 0)′ are (n − 1)-vectors picking the respective entries

of ζt = (ηt, εt, ζ
(r)′

t )′. Finally, the components α
(r)
t , ζ

(r)
t allow for general specifications with

α
(r)
t = T (r)α

(r)
t−1 + R(r)ζ

(r)
t that load on yt via Z(r)α

(r)
t . They may capture additional stochas-

tic trends (possibly of different memory) and seasonal components among others. Furthermore,

ut may account for additional terms in the measurement equation, such as measurement errors,

deterministic terms, or observable explanatory variables. While both, α
(r)
t and ut are implicitly set

to zero in section 4, their specification in practice is left open to the applied researcher. Finally,

Var(ζt) = Q.

5.1 Deterministic components

In practice, deterministic components often need to be considered. As will become clear, such terms

can be straightforwardly added to the state space framework, and their estimation can be carried

out efficiently by a combination of the Kalman filter, the GLS estimator, and the CSS estimator. For

the GLS estimator to be a consistent estimator for the coefficients of the deterministic components,

the deterministic terms must diverge at a rate similar to the divergence rate of the stochastic trend.

Deterministic components can be taken into account either by detrending the data prior to

estimating the fractional UC model, or by adding the components to the state space model. How-

ever, prior detrending biases the estimates for both deterministic and stochastic trends whenever

the data are non-stationary, and thus should be avoided (Harvey; 1989, ch. 6.1.3). An alternative

is to include the deterministic terms into the state vector and to explicitly model their dynamics

via the state equation (18). However, state space models with deterministic components in the

state vector are not stabilisable, so the Kalman filter does not converge to its steady state solution

and the CSS estimator is not applicable, see Harvey (1989, ch. 4.2.5). Following the suggestion

there, I place the deterministic terms directly in the measurement equation (17). This allows to

estimate the deterministic components by the GLS estimator and does not interfere with the steady

state convergence of the Kalman filter. The remaining parameters θ0 can be estimated via CSS as

described in section 4, with the asymptotic theory being unaffected.

To model the deterministic terms, I set ut = µ′wt in the measurement equation (17), where

wt is a non-stochastic k-vector holding k deterministic components, and µ is a k-vector of un-

known parameters to be estimated. The modified measurement equation is then yt = µ′wt + Zαt.

Letting W = (w1, ..., wn)′ denote the n × k matrix collecting all wt, and V = Var(x1:n + c1:n)

denote the variance-covariance matrix of x1:n + c1:n, the GLS estimator for µ is given by µ̃ =

(W ′V −1W )−1W ′V −1y1:n, see Harvey (1989, ch. 3.4.2). As also shown there, it is not necessary to

compute V −1. To see this, assume for the moment that yt−µ′wt was observable. The Kalman filter,
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when applied to yt − µ′wt, yields the filtered values for trend and cycle in (6) to (9), together with

the prediction errors as denoted by v∗t (θ) in the following for the modified model. These prediction

errors correspond to the linear filtering F (θ)(y1:n −Wµ), where F (θ) from the Cholesky decom-

position V −1(ψ) = F (θ)′D−1(ψ)F (θ) is a p.d. lower triangular matrix with ones on the leading

diagonal, D(ψ) is a diagonal p.d. matrix, and V (ψ) is the covariance matrix of x1:n + c1:n condi-

tional on ψ. Since the Kalman filter is linear, it can be applied separately to the observable yt and

wt, yielding F (θ)y1:n = y∗(θ) and F (θ)W = W ∗(θ) as prediction errors. The GLS estimator µ̃ then

follows from regressing y∗(θ) = (y∗1(θ), ..., y∗n(θ))′ on W ∗(θ) = (w∗1(θ), ..., w∗n(θ))′, see Harvey (1989,

ch. 3.4.2). The concentrated CSS estimator θ̃ = (d̃, ν̃, ϕ̃′)′ follows from minimizing the modified

sum of squared prediction errors

θ̃ = arg min
θ

1

n

n∑
t=1

v∗t (θ)
2, (19)

and v∗t (θ) = y∗t (θ)− µ̃′w∗t (θ) is the GLS residual. Asymptotic standard errors can be obtained from

the Fisher information matrix (Harvey; 1989, ch. 4.5.3 and ch. 7.3).

To derive the asymptotic properties of both the GLS estimator µ̃ and the concentrated CSS

estimator (19), let the j-th term in wt be wj,t = O(tβj ), t ≥ 1, βj ∈ R, such that wj,t is a

polynomial trend. I will only consider −1 < βj ≤ d0 for all j, as the lower bound is required for

∆d0
+ t

βj = O(tβj−d0) to hold, see Robinson (2005), while the upper bound ensures that the fractional

stochastic trend is not drowned by the deterministic terms. This guarantees that the results on

consistency and asymptotic normality of the CSS estimator in theorems 4.1 and 4.2 remain valid.

However, at least for CSS estimation of ARFIMA models, Hualde and Nielsen (2020) recently

derived the asymptotic theory where they also allowed for deterministic trends of higher power,

βj > d0. As the focus of this paper is not on the deterministic components, showing their results

to carry over is left open for future research.

Note that within −1 < βj ≤ d0, the arguments for consistency of the CSS estimator of θ0

remain unchanged: y∗(θ) = F (θ)y1:n is I(d0 − d) and precisely equals the initial prediction error

(14) in section 3 if yt contains no deterministic terms, since F (θ)y1:n is the residual from applying

the Kalman filter as defined in section 3 to y1:n given the parameters θ. If deterministic terms are

present in yt, then y∗(θ) = F (θ)y1:n equals the prediction error (14) shifted either by a constant,

or by an o(1) term (depending on how close βj is to d0, as will become clear). Therefore, also the

prediction error v∗t (θ) = [y∗(θ) −W ∗(θ)(W ∗′(θ)W ∗(θ))−1W ∗
′
(θ)y∗(θ)](t) is I(d0 − d). Thus, both

y∗t (θ) and v∗t (θ) are asymptotically stationary for d0 − d < 1/2, otherwise non-stationary. By the

same proof as for (B.1), the objective function (19) can be shown to converge in probability whenever

d0−d > −1/2, and to diverge in the opposite case. Therefore, the probability of the CSS estimator

to converge within the non-stationary region of the parameter space is asymptotically zero. Thus, it

is sufficient to consider the region of the parameter space where v∗t (θ) is asymptotically stationary.

Within this region, the same proof as for theorem 4.1 applies, showing that a UWLLN holds for

the objective function. Thus, θ̃ is consistent. This result is somewhat obvious, as the assumption

on βj ensures that the filtered y∗t (θ0) contains at most deterministic terms of order O(1).

For the GLS estimator, define u∗(θ) = (u∗1, ..., u
∗
n)′ = F (θ)(x1:n + c1:n) as the residual from
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applying the Kalman filter to the true x1:n and c1:n. u∗t (θ) would equal the prediction error v∗t (θ)

if there were no deterministic terms. The GLS estimates µ̃ are thus

µ̃ = (W ∗
′
(θ̃)W ∗(θ̃))−1W ∗

′
(θ̃)F (θ̃)yn:1

= (W ∗
′
(θ̃)W ∗(θ̃))−1W ∗

′
(θ̃)F (θ̃) [Wµ0 + x1:n + c1:n]

= µ0 + (W ∗
′
(θ̃)W ∗(θ̃))−1W ∗

′
(θ̃)u∗(θ̃),

(20)

where µ0 denotes the true coefficients to be estimated. µ̃ is consistent if and only if the latter

term in (20) is op(1), i.e. the bias converges to zero as n → ∞. For the purpose of illustration, I

will focus only on a single deterministic term, such that W ∗(θ̃) = (w∗1(θ̃), ..., w∗n(θ̃))′. However, the

results carry over directly to several deterministic components. First, note that by the fractional

differencing via F (θ̃), w∗t (θ̃) = O(tβ−d̃), while u∗t (θ̃) ∼ I(d0− d̃). By consistency of the concentrated

CSS estimator, u∗t (θ̃) is asymptotically I(0), while w∗t (θ̃) = O(tβ−d0), and thus
∑n

t=1w
∗2
t (θ̃) =∑n

t=1O(t2(β−d0)), see Hualde and Nielsen (2020, lemma S.10). Hence, for a single deterministic

component, the bias term in (20) can be written as

(W ∗
′
(θ̃)W ∗(θ̃))−1W ∗

′
(θ̃)u∗(θ̃) =

(∑n
t=1w

∗2
t (θ̃)

n1+2(β−d̃)

)−1 ∑n
t=1w

∗
t (θ̃)u

∗
t (θ̃)

n1+2(β−d̃)
, (21)

where n−1−2(β−d̃)
∑n

t=1w
∗2
t (θ̃) is bounded from above and below as n→∞. In contrast, by Hualde

and Nielsen (2020, eqn. (S.88)), n−1−2(β−d̃)
∑n

t=1w
∗
t u
∗
t (θ̃) = op(1) if and only if d0−1/2 < β. Thus,

the GLS estimator for the deterministic terms is consistent only if the deterministic and stochastic

trends diverge at similar rates. As also can be seen from (21), the power of the deterministic term

affects the rate of convergence of the GLS estimator: Since n−1/2−(β−d̃)
∑n

t=1w
∗
t (θ̃)u

∗
t (θ̃) converges

in distribution when n → ∞, see Hualde and Nielsen (2020, proof of cor. 1), it follows that the

GLS estimator converges at the rate n1/2+(β−d0) as n → ∞, and thus the rate is slower than the

standard
√
n-convergence whenever the deterministic terms are dominated by the stochastic trend.

In summary, any trend of order d0 − 1/2 < βj ≤ d0 can be estimated consistently, and the

convergence rate of the GLS estimator will be faster the closer βj is to d0. This is in line with

the well-established finding in the literature, that an intercept (i.e. βj = 0) cannot be estimated

consistently for time series with unit roots (d0 = 1), whereas a linear trend (βj = 1) can be

estimated consistently. Moreover, the convergence rate matches the findings of Robinson (2005) for

semiparametric long memory models with deterministic components, of Hualde and Nielsen (2020)

for parametric ARFIMA models with deterministic components, and the general literature on the

estimation of the sample mean for fractionally integrated processes, see e.g. Hassler (2019, ch. 7).

5.2 Correlated trend and cycle innovations

As shown by Morley et al. (2003), at least for integer-integrated structural time series models

of log US real GDP, correlation between permanent and transitory shocks is found to be highly

significant. Therefore, this subsection generalizes the fractional UC model to account for correlated
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innovations

Var

(
ηt

εt

)
=

[
σ2
η σηε

σηε σ2
ε

]
= Σ.

The new optimization problem of the Kalman filter is then

x̂t:1(yt:1, ψ̃) = arg min
xt:1

1

t

t∑
j=1

[(
ηj εj

)
Σ−1

(
ηj

εj

)]

= arg min
xt:1

1

t

1

σ2
ησ

2
ε − σ2

ηε

t∑
j=1

[
σ2
ε η

2
j − 2σηεηjεj + σ2

ηε
2
j

]
,

where ψ̃ = (d, σ2
η, σηε, σ

2
ε , ϕ

′)′ denotes the new parameter vector that now also includes the covari-

ance σηε. By dropping the determinant and plugging in ηj = ∆d
+xj as well as εj = b+(L,ϕ)(yj−xj),

the optimization problem can be written as

x̂t:1(yt:1, ψ̃) = arg min
xt:1

1

t

t∑
j=1

[
σ2
ε (∆

d
+xj)

2 − 2σηε∆
d
+xjb+(L,ϕ)(yj − xj) + σ2

η (b+(L,ϕ)(yj − xj))2
]

= arg min
xt:1

1

t

[
σ2
η‖Bϕ,t(yt:1−xt:1)‖2 − 2σηε(yt:1 − xt:1)′B′ϕ,tSd,txt:1 + σ2

εx
′
t:1S

′
d,tSd,txt:1

]
,

where the matrix representation in the last step is derived analogously to (12). The solution to the

optimization problem is then

x̂t:1(yt:1, ψ̃) =
[
σ2
ηB
′
ϕ,tBϕ,t + σηε(S

′
d,tBϕ,t +B′ϕ,tSd,t) + σ2

εS
′
d,tSd,t

]−1

×
(
σ2
ηB
′
ϕ,tBϕ,t + σηεS

′
d,tBϕ,t

)
yt:1,

(22)

and, either by solving the same optimization steps for ĉt:1(yt:1, ψ̃), or by using yt:1 = x̂t:1(yt:1, ψ̃) +

ĉt:1(yt:1, ψ̃)

ĉt:1(yt:1, ψ̃) =
[
σ2
ηB
′
ϕ,tBϕ,t + σηε(S

′
d,tBϕ,t +B′ϕ,tSd,t) + σ2

εS
′
d,tSd,t

]−1

×
(
σ2
εS
′
d,tSd,t + σηεB

′
ϕ,tSd,t

)
yt:1.

(23)

Obviously, (22) and (23) equal (6) and (7) for σηε = 0. As before, the number of parameters in the

optimization may be reduced by dividing the first and second parenthesis in (22) and (23) by σ2
η,

defining ν = σ2
ε /σ

2
η as well as ν2 = σηε/σ

2
η, and replacing ψ̃ by θ̄ = (d, ν, ν2, ϕ

′)′. This is necessary

for the CSS estimator to be identified, however the quasi-maximum likelihood estimator derived in

subsection 5.3 can be used to estimate ψ̃0 = (d0, σ
2
η,0, σηε,0, σ

2
ε,0, ϕ

′
0), the true parameters, directly.

The objective function for the CSS estimator can be constructed analogously to section 4: First,

the one-step ahead predictions for xt+1 and ct+1 are obtained as in (8) and (9). Next, they are

subtracted from yt+1, which gives the prediction error

vt+1(ψ̃) = ∆d
+yt+1 + (b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))

×
[
σ2
ηB
′
ϕ,tBϕ,t + σηε(S

′
d,tBϕ,t +B′ϕ,tSd,t) + σ2

εS
′
d,tSd,t

]−1 (
σ2
εS
′
d,t + σηεB

′
ϕ,t

)
Sd,tyt:1.

(24)
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Based on (24), a CSS estimator for the true parameters θ̄0 = (d0, ν0, ν2,0, ϕ
′
0) can be set up. Note

that yt+1 enters (24) in fractional differences, and also note that all terms in (24) have the same

convergence rates as for the case with uncorrelated errors. Thus, the CSS estimator with correlated

innovations can be shown to be consistent and asymptotically normally distributed by carrying out

the same proofs as summarized in section 4. Finally, as noted by Morley et al. (2003), for the

integer-integrated case d0 = 1, the model is not identified if ct follows an AR(p) with p < 2,

since the autocovariance function of ∆yt dies out after lag one. For non-integer integration orders,

identification is not a problem, as the autocovariance function of ∆d
+yt dies out only at lag t.

5.3 Maximum likelihood estimation

Since the vast majority of state space models are estimated by quasi-maximum likelihood (QML),

this subsection relates the CSS estimator to the QML estimator. For this purpose, denote ψ =

(d, σ2
η, σ

2
ε , ϕ)′ the vector holding the model parameters of the fractional UC model. Furthermore,

let Varψ (vt(ψ)|y1, ..., yt−1) = σ2
vt denote the (hypothetical) variance of vt(ψ) that is obtained when

evaluating the conditional distribution of vt(ψ) at ψ. While the CSS estimator allowed to concen-

trate out the variance parameters σ2
η, σ

2
ε and model only their variance ratio ν = σ2

ε /σ
2
η, this is

not possible for the QML estimator, since the levels of σ2
η, σ

2
ε determine σ2

vt . Thus, optimization

is conducted over ψ. Note further that ψ can be extended to account for correlated innovations,

as described in subsection 5.2. A recursive solution for σ2
vt is typically obtained from the Kalman

filter, see Durbin and Koopman (2012, ch. 4.3). The quasi-log likelihood is then set up based on

the conditional distribution of vt(ψ) and is given by

logL(ψ) = −1

2

n∑
t=1

log σ2
vt −

1

2

n∑
t=1

v2
t (ψ)

σ2
vt

,

see Harvey (1989, ch. 3.4). Now, if the Kalman filter converges to its steady state solution at

an exponential rate, the QML estimator is asymptotically independent of the initialization of the

Kalman filter, see Harvey (1989, ch. 3.4.2), and σ2
vt converges to a constant. Thus, neither ini-

tialization of the Kalman filter, nor time-dependence of σ2
vt matter asymptotically, and therefore

the CSS estimator in (16) has the same asymptotic distribution as the QML estimator, see Harvey

(1989, p. 129).

For the Kalman filter to converge to its steady state solution at an exponential rate, it is sufficient

that the state space model is detectable and stabilizable (Harvey; 1989, ch. 3.3.3). Detectability

is implied by observability, while stabilizability is implied by controllability (Harvey; 1989, ch.

3.3.1). The state space model as introduced at the beginning of this section is controllable if

Rank(G,TG, ..., Tm−1G) = m, where m is the dimension of αt, and G = RS′ where S is the upper-

triangular matrix from the Cholesky decomposition of the covariance matrix Q = S′S (Harvey;

1989, ch. 3.3.1). The rank condition can be verified by simple algebra, and depends crucially on

Q having full rank. Controllability means that given a realization of αt at some period t, the

innovations ζt+j , j = 1, ...,m, can be chosen such that an arbitrarily prescribed value α∗t+m is

obtained. Since in each period a new innovation enters (18) for both xt and ct, their states in
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αt+m can be controlled by controlling ζt+j . Thus, the state space model is controllable. Similarly,

the state space model is observable if Rank(Z ′, T ′Z ′, ..., (T ′)m−1Z ′) = m (Harvey; 1989, ch. 3.3.1),

which again can be verified algebraically. The idea of observability is that αt can be uniquely

determined if yt, ..., yt+m−1, as well as ζt, ..., ζt+m−1 are known. This is easy to see: Suppose yt+j

is known for some j > 0. Then ∆d
+yt+j = ηt+j + ∆d

+ct+j can be calculated. With ηt+j at hand, we

can directly calculate ct+j , and thus also xt+j . It follows that the system is observable. Thus, as

n → ∞, the CSS estimator and the QML estimator become identical, which was also pointed out

by Harvey (1989, p. 187) for integer-integrated models. Consequently, the results in section 4 also

hold for the QML estimator.

Finally, while computational efficiency clearly favors the CSS estimator, which avoids the

Kalman recursions for the conditional variance of the state vector, the QML estimator may be

advantageous in finite samples where the initialization of the Kalman filter plays a non-negligible

role. In particular, a combination of the QML estimator, for an initial burn-in period, and the CSS

estimator, once the filtered prediction error variance has sufficiently converged, seems promising: It

combines the possibility of diffuse initialization and thus assigns a lower weight to initial prediction

errors, but switches to the computationally efficient CSS estimator once the benefits of the QML

estimator have vanished. The performance of this estimator, typically called the steady-state filter

(Harvey; 1989, p. 185f), is also examined in a Monte Carlo study in section 6 and compared to the

CSS estimator.

6 Simulations

By the means of a Monte Carlo study, this section examines the finite sample estimation properties

for the latent components and parameters of the fractional UC model as introduced in section 2.

By considering both the CSS estimator of section 4 and the QML estimator of subsection 5.3, the

study demonstrates the loss of estimation accuracy of the computationally simpler CSS estimator

by treating the filtered prediction error variance to be constant. Thus, the study puts a price tag on

the computational efficiency gains and provides empirical researchers with guidance on when to use

the CSS estimator. Furthermore, the parameter estimates for the integration order are compared

to the exact local Whittle estimator of Shimotsu and Phillips (2005) for various choices of tuning

parameters as a prominent benchmark. To see whether allowing for fractional trends matters, I also

present results for the integer-integrated UC models in the spirit of Harvey (1985) and Morley et al.

(2003). Doing so, I examine whether fractional trends are well approximated by integer-integrated

models, or whether the estimates for xt and ct are significantly biased. Furthermore, I investigate

whether misspecifying d to be one biases the parameter estimates.

Two different data-generating mechanisms are considered: Subsection 6.1 simulates data based

on the fractionally integrated UC model with uncorrelated trend and cycle innovations as introduced

in section 2, while subsection 6.2 in addition allows for correlated innovations as discussed in

subsection 5.2. Both studies vary over the sample size n ∈ {100, 200, 300}, the integration order

d0 ∈ {0.75, 1.00, 1.25, 1.75}, and the variance ratio of trend and cycle innovations ν0 =
σ2
ε,0

σ2
η,0
∈

{1, 5, 10}. Thus, they capture small to medium sized samples as typical in empirical applications
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of UC models, allow for non-stationary mean-reverting trends as well as for non-mean-reverting

trends, and reflect situations where short- and long-run shocks are of equal magnitude as well as

situations where the long-run shocks are drowned by the short-run dynamics. Each simulation

consists of R = 1000 replications.

Unlike the CSS estimator, the QML estimator uses the Kalman iterations for the variance of

the prediction error, thereby allowing it to be time-dependent: In the Kalman filter, the trend is

initialized with variance zero, as implied by the type II definition of fractional integration in (2),

whereas the cycle is initialized with its long-run variance as typical in the UC literature. Next, in a

burn-in period, the QML estimator takes into account the exponential convergence of the prediction

error variance by allowing it to converge to its steady-state value. Once the prediction error

variance has converged sufficiently, i.e. it satisfies
∣∣∣Varψ(vt+1(ψ)|y1,...,yt)−Varψ(vt(ψ)|y1,...,yt−1)

Varψ(vt(ψ)|y1,...,yt−1)

∣∣∣ < 0.01,

the optimization switches to the steady state Kalman filter, which assumes the prediction error

variance to be constant from that point on. This avoids further iterations of the Kalman filter

for the prediction error variance, speeds up the computation, and has a negligible impact on the

estimation accuracy.

Both the CSS and the QML estimator are initialized by first evaluating the objective functions

at a large, equally-spaced grid for the model parameters, and the grid point referring to the lowest

value of (16) for the CSS estimator or the lowest negative likelihood is chosen as the starting point

for numerical optimization. As a benchmark, the exact local Whittle estimator of Shimotsu and

Phillips (2005) is introduced, using m = bnjc Fourier frequencies, j ∈ {.50, .55, .60, .65, .70}.
Parameter estimates are compared by the root mean squared error (RMSE), as well as by the

bias. To assess how well trend and cycle are estimated, the coefficients of determination R2
x and

R2
c from regressing xt and ct on their respective estimates from the Kalman smoother are reported

for both CSS and QML estimates.

6.1 Fractional UC model with uncorrelated innovations

In this subsection, I study the finite sample properties of the CSS and QML estimator for the

simple fractional UC model

yt = xt + ct, ∆d
+xt = ηt, ct − b1ct−1 − b2ct−2 = εt, (25)

where ηt ∼ NID(0, 1), εt ∼ NID(0, ν) are uncorrelated. The cyclical coefficients are set to b1,0 = 1.6,

b2,0 = −0.8 to reflect strong cyclical patterns. To allow for a better comparison of the CSS and the

QML estimator, σ2
η,0 = 1 is fixed and is assumed to be known in the QML optimization, such that

estimation is carried out over θ for both the CSS and the QML estimator.

Table A.1 shows the RMSE and the bias for the estimated integration orders for the CSS

estimator, the QML estimator, and the exact local Whittle estimator. As can be seen, both RMSE

and bias decrease as n increases, which is in line with the theoretical results on consistency. As

can be expected from the parametric nature, the fractional UC model yields a much smaller RMSE

as compared to the nonparametric Whittle estimator. The differences are particularly striking for

high ν0, where the signal of the fractional trend is drowned by a strong cyclical variation, and for
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high n. In a direct comparison, the QML estimator slightly outperforms the CSS estimator for the

estimation of the integration order, but except for d0 = 1.75, the differences are rather small. Both

the CSS and the QML estimator appear to have little or no bias for d0, while the cyclical dynamics

induce a strong negative bias on the exact local Whittle estimates.

Tables A.2 and A.3 contain the RMSE and the bias for ν0 and the autoregressive parameters,

for both the CSS and the QML estimates. In addition to the fractional UC model, the table also

displays the estimation results for an I(1) UC benchmark that sets d = 1, both for the CSS and the

QML estimator. While for b1,0 and b2,0, the CSS estimator and the QML estimator show a similar

performance, major differences occur for the estimate of ν0, where both the bias and the RMSE

are significantly smaller for the QML estimator. In particular, the CSS estimate for ν0 is always

upward-biased, while no such bias is visible for the QML estimator. While the CSS estimator,

when compared to the QML estimator, showed little to no disadvantages for the estimation of d0,

b1,0, and b2,0 , the price for the computational simplicity is obviously a biased, imprecise estimate

for ν0. The direct comparison with the I(1) benchmark reveals a slightly smaller RMSE for the

fractional UC model for the estimation of b1,0 and b2,0, while ν0 is estimated with a significantly

higher precision via the fractional UC model whenever d0 6= 1. Interestingly, for d0 = 1.75 the

QML estimate of the I(1) UC model for ν0 is strongly upward-biased, while no bias is visible for

the QML estimate of the fractional UC model.

Table A.4 compares the estimates for xt and ct for the fractional UC model and the I(1) UC

benchmark (which sets d = 1). As before, it contains the results for both the CSS estimator and the

QML estimator. As can be seen, differences between the coefficients of determination are almost

negligible for the CSS and the QML estimator of the fractional UC model, with the latter exhibiting

slightly larger coefficients of determination. Strikingly, for d0 = 1 the fractional UC model shows

no loss in efficiency compared to the I(1) UC model. For non-integer d0, the fractional model

clearly outperforms the benchmark model, especially when ν0 is small. However, for d0 ≤ 1.25, the

coefficients of determination are still relatively high for the I(1) benchmark, so that, at least for

integration orders close to unity, integer-integrated UC models appear to be able to approximate

the fractionally integrated trend well, while for d0 = 1.75 integer-integrated UC models clearly fail

to resemble the dynamics of the two latent components.

6.2 Fractional UC model with correlated innovations

To examine the estimation properties for the latent components and parameters of the fractional

UC model when the long- and short-run innovations are allowed to be correlated, I modify (25) by

allowing for a non-diagonal Q in (
ηt

εt

)
∼ NID(0, Q). (26)

As before, the cyclical coefficients are set to b1,0 = 1.6, b2,0 = −0.8. Q0 is parameterized as σ2
η,0 = 1,

σ2
ε,0 = ν0 ∈ {1, 5, 10}, which yields medium to strong cyclical fluctuations. To mimic strong (but not

perfect) correlation between long- and short-run innovations, I set σηε,0 = ρ0
√
ν0 with ρ0 = −0.8.
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Note that while optimization is carried out over θ̄ = (d, ν, ν2, ϕ
′)′ for the CSS estimator, and over

ψ̃ = (d, σ2
η, σηε, σ

2
ε , ϕ

′)′ for the QML estimator, to simplify the interpretation results are reported

for the transformed ρ = ν2/
√
ν = σ2

ηε/(σησε) instead of reporting ν2 or σηε .

For the correlated fractional UC model, table A.5 shows RMSE and bias for the estimated

integration orders via CSS, QML, and the exact local Whittle estimator. As before, RMSE and

bias are similar for CSS and QML, and decrease in n. While the fractional UC model outperforms

most of the Whittle estimates, the latter performs surprisingly well for a bandwidth choice of

α = 0.65 for n = 100, and α = 0.70 for n = 200. As before, estimates for the fractional UC model

show little bias for d0, while the benchmarks are significantly perturbed by the cyclical dynamics.

For the CSS estimator, table A.6 shows RMSE and bias for ν0, ρ0, and the autoregressive

parameters both for the fractional UC model and the integer-integrated UC model, while those

for the QML estimator are contained in table A.7. As in the uncorrelated case, CSS estimates

for ν0 exhibit a large RMSE. For ν0 ≤ 5, the CSS estimator is typically upward-biased, whereas

it is downward-biased for ν0 = 10. As can be expected, the bias is more pronounced for the

I(1) benchmark, where the RMSE is also higher. More interestingly, the benchmark estimates for

ν0 are typically upward-biased whenever d0 < 1, and downward-biased whenever d0 > 1. Since

ν0 = σ2
ε,0/σ

2
η,0 is the variance ratio of the innovations, this is natural: Whenever d0 < 1, the

random walk for a fixed σ2
η has a faster diverging variance than the I(d0) process. To compensate

for the slower rate of divergence of the I(d0) process, ν̂ must be upward-biased in the I(1) model,

and vice versa for d0 > 1. For ρ0, note that a similar pattern is visible whenever ν0 = 1: For

d0 < 1, estimates for the correlation between long- and short-run shocks are upward-biased, and

sometimes even positive. This is due to the upward-biased ν̂, which yields an estimate for the

trend that is smoother than the true one. Thus, the cycle needs to account for the additional

long-run fluctuations that are not captured by the smooth trend, which can be achieved by a

positive estimate for the correlation coefficient. For d0 > 1, the smoothed trend of the I(1) model

is more volatile than the true one, and the I(1) UC model re-adjusts by estimating a downward-

biased correlation coefficient, resulting in a more negative relation between trend and cycle than

in the data-generating mechanism. Note that the potential for adjustment of the I(1) model to

fractionally integrated trends via the correlation parameter estimate is limited by the nature of

the correlation ρ ∈ [−1; 1], and thus corner solutions with ρ̂ = −1 can be expected when d0 is

greater than one, and with ρ̂ = 1 whenever d0 is smaller than one. As before, there are only little

differences for the estimates of the autoregressive coefficients between the fractional model and the

I(1) model, except for d0 = 1.75, where the estimates of the I(1) UC model are heavily biased by

the misspecification of the integration order.

From the QML results of the fractional UC model in table A.7, it becomes apparent that

σ̂2
ηQML

, σ̂2
εQML

exhibit some bias and a higher RMSE, particularly when d0 and ν0 are high and n

is small. Fortunately, both RMSE and bias decrease as the sample size increases, however the level

of precision with which the variance parameters are estimated appears to be lower compared to the

other parameters. In line with the CSS results, table A.7 shows a high RMSE for the estimate of

σ2
η,0 from the integer-integrated UC model whenever d0 = 1.75, together with strong, positive bias.

This is natural, as the higher variance parameter is required to capture the additional variation that
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is induced by the strong persistence and not captured by the I(1) trend specification. A similar bias

is visible for the estimate of σ2
ε,0 in the integer-integrated setup, indicating that also the cyclical

component is perturbed by the integration order exceeding unity. As for the CSS estimator, for

ν0 = 1 the correlation estimate ρ̂
I(1)
QML is upward-biased whenever d0 < 1, and downward-biased

whenever d0 > 1, while no such bias is detected for the fractional UC model. Moreover, for

d0 ≤ 1.25 the autoregressive parameters are estimated with great precision for both, fractional

and I(1) UC model, with both bias and RMSE slightly favoring the fractional model whenever

d0 6= 1. Whenever d0 = 1.75, estimates for the AR coefficients from the integer-integrated models

are biased, as for the uncorrelated scenario.

Table A.8 compares the coefficients of determination for the smoothed trend and cycle compo-

nents of the fractional and the I(1) UC model. For the fractional UC model, the QML estimator

typically has a minor advantage over the CSS estimator in terms of the coefficients of determina-

tion. Moreover, for d0 = 1 the fractional UC model shows no efficiency loss compared to the I(1)

UC models. For d 6= 1, the fractional UC model outperforms the integer-integrated models, where

the difference is particularly striking for d0 = 1.75.

7 Application

In this section, I apply the fractional UC model to monthly global sea surface temperature anoma-

lies. Trends and cycles of climate time series have recently attracted attention in the econometric

literature, see Chang et al. (2020), Gadea Rivas and Gonzalo (2020), and Proietti and Maddanu

(2022), however fractional trends have not played a role so far. Beyond estimating the memory pa-

rameter, which may be of interest in its own right, the fractional UC model allows to draw inference

on trending and cyclical temperature phenomena, as well as on their interaction once correlation is

allowed for. On the one hand, the estimate for d0 allows to test for mean reversion of the trend. If

rejected, the smoothed trend component reveals the extent of permanent temperature rise. On the

other hand, the cyclical component of monthly global sea surface temperature can be matched with

well-understood cyclical climate phenomena, such as El Niño and La Niña. Estimation results from

the fractional UC model can be compared against those of I(1) and I(2) UC models. In particular,

the hypothesis of an integer integration order is testable, and, if rejected, the fractional UC model

sheds light on the extent to which trend and cycle estimates are perturbed when the trend memory

is misspecified in traditional UC models.

Data on monthly global sea surface temperature anomalies stem from the National Centers

for Environmental Information and are calculated based on the extended reconstructed sea surface

data of Huang et al. (2017).4 The series spans from January 1850 to July 2023, thus consists of 2083

observations, and is measured as the deviation from the 1901 – 2000 average in degrees Celsius.

4Data were accessed on 2023/09/12 and can be downloaded from https://www.ncei.noaa.gov/access/

monitoring/global-temperature-anomalies/anomalies
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To decompose temperature anomalies into trend and cycle, I specify the fractional UC model

yt = xt + ct, ∆d
+xt = µ+ ηt,

p∑
j=0

bjct−j = εt, (27)

where b0 = 1, and thus ct is an autoregressive process of order p with all roots of b(L) =
∑p

j=0 bjL
j

outside the unit circle, as typical in the UC literature. The specification of the trend allows for a

non-zero mean in ∆d
+xt, generating a deterministic trend of order d in yt. This is a generalization of

integer-integrated UC models, that allow either for a linear deterministic trend whenever xt ∼ I(1)

(see e.g. Harvey; 1985; Morley et al.; 2003) or for a quadratic one whenever xt ∼ I(2) (see e.g.

Clark; 1987; Oh et al.; 2008). Moreover, Var(ηt, εt)
′ = Q is allowed to be non-diagonal.

Estimation of the fractional UC model is carried out by the QML estimator as described in

subsection 5.3, as the QML estimator was found to be more accurate for the covariance parameters

of trend and cycle innovations in the simulation studies in section 6 than the CSS estimator.

To estimate the fractional UC model, I draw 100 combinations of starting values from uniform

distributions with appropriate support.5 As numerical optimization of the quasi-likelihood of the

fractional UC model is computationally intensive for n = 2083 observations, I use ARMA(3, 3)

approximations for the fractional differencing operator as suggested by Hartl and Jucknewitz (2022)

to speed up the grid search: As they describe in great detail, a continuous function that maps from d

onto the six ARMA(3, 3) coefficients is obtained first by choosing those six ARMA coefficients that

minimize the Euclidean distance between the Wold representation of the fractional differencing

polynomial and the Wold representation of the ARMA polynomials for a sequence of d (here:

d ∈ [0; 2.5]). Next, the mapping is made continuous by smoothing over the sequence of d, as well

as the ARMA coefficients, using splines. Consequently, optimization is carried out over d, however

the use of ARMA(3, 3) approximations yields a low-dimensional state space representation of

the (approximate) fractional UC model and thus greatly speeds up the computations. Finally, the

estimate that maximizes the likelihood of the (approximate) fractional UC model is taken as starting

value for the numerical likelihood maximization of the (exact) fractional UC model. Estimation is

carried out for p ∈ [1; 3; ...; 12] autoregressive lags, and p = 4 is selected as this minimizes both the

Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for the (exact)

fractional UC model. In addition to the QML estimates of the fractional UC model, I also present

estimation results for an I(1) and an I(2) UC model that set d = 1 and d = 2 in (27) respectively.6

Table A.9 contains the estimation results for the fractional UC model and the two integer-

integrated benchmarks. All models allow for p = 4 autoregressive lags in (27), as suggested by

the AIC for all models.7 The QML estimator for the fractional UC model yields d̂QML = 1.753,

together with a 95% confidence interval [1.634; 1.872], and a 99% confidence interval [1.596; 1.909].

Consequently, both hypotheses that d0 = 1 and d0 = 2 are rejected, supporting a specification of the

5More precisely, d is drawn from [1/2; 2], Q is drawn from reasonable combinations of σ2
η, σ2

ε , and σηε that can
generate the realized variation in the observable yt, and autoregressive parameters are drawn randomly from the set
of coefficients that ensure the cyclical AR polynomial to be stable.

6Estimation for the benchmark models is carried out as for the fractional UC model, i.e. via the QML estimator
where starting values are chosen via a grid search with 100 grid points.

7The BIC suggests two autoregressive lags for the benchmarks.
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trend component with a longer memory than a random walk, but a shorter memory than a quadratic

trend. The estimated variance ratio of short- and long-run innovations ν̂QML = σ̂2
εQML

/σ̂2
ηQML

=

146621 reveals a very smooth trend component and leaves rich variation to the cycle. Although

the estimate for σ2
η,0 is small, the hypothesis that the long-run component is purely deterministic

(i.e. σ2
η,0 = σηε,0 = 0) is rejected on all conventional levels of significance, as the log likelihood

of the restricted model is 5420.9, such that the test statistic of the likelihood ratio test for the

respective hypothesis is 31.4. Estimates for the autoregressive coefficients suggest a persistent

cyclical pattern, with the greatest eigenvalue of the AR polynomial being 0.92. Moreover, long-

and short-run innovations are found to be mildly negatively correlated.

In line with simulation results in section 6, estimates for the autoregressive coefficients are

very similar for the fractional UC model and the two benchmarks, while the variance-covariance

estimates for long- and short-run innovations are strongly biased for the integer-integrated mod-

els: As also noted in section 6, if in integer-integrated models the integration order of the trend

is assumed lower than in the data-generating mechanism, the additional long-run variation not

captured by the trend specification upward-biases the estimate for the variance of the long-run

innovations. Vice versa, if an integration order higher than in the data-generating mechanism is

assumed, the estimate for σ2
η,0 will be downward-biased. Consequently, the estimate for σ2

η,0 from

the I(2) benchmark is smaller than the one from the fractional UC model, while the estimate from

the I(1) benchmark is greater. Moreover, both benchmarks converge towards the corner solution

of (almost) perfectly correlated long- and short-run innovations. This behavior is again in line with

the simulation results in table A.7 for integration orders 0.75 and 1.75, and a variance ratio ν > 1.

Figure 1: Trend temperature anomalies: The plot shows monthly global sea surface temperature
anomalies (black) together with the estimated trend x̂t(yn:1, ψ̂QML) (red, dashed) from the frac-
tional UC model. Shaded areas correspond to warm (red) and cold (blue) periods based on a
threshold of ±1/2 degree Celsius for the Oceanic Niño Index (ONI).9

9From 1950 on, the ONI is reported by the Climate Prediction Center of the National Weather Service and
can be downloaded from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_
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Figure 1 plots the smoothed trend estimate x̂t(yn:1, ψ̂QML), together with the series for monthly

global sea surface temperature anomalies. The smooth nature of the estimated trend component

follows directly from the high estimate of the integration order and the low estimate for the variance

of the long-run innovations. While the first half of the sample does not clearly point towards a

decreasing or increasing nature of the trend component, at least since the mid 20th century trend

temperature anomalies are strictly increasing. In July 2023, the last observational period, the

estimated trend component equals +0.76 degrees Celsius.

Figure A.1 allows to compare the trend estimate from the fractional UC model to those of the

I(1) UC model, the I(2) UC model, and the HP filter with tuning parameter λ = 14, 400 as typical

for monthly data. Contrary to the fractional model, the benchmarks attribute significant short-run

variation to the trend component: Clearly, the I(1) UC model yields a much more erratic trend

that behaves countercyclical, i.e. it increases during the cold Niña periods and decreases during

the warm Niño periods. HP filter and the I(2) benchmark attribute more of the overall variation

to the trend component, as their estimates for the trend match the observable series much more

closely compared to the smoothed trend component of the fractional UC model. Obviously, the

additional short-run dynamics in the benchmark models are generated by the (almost) perfect

negative correlation coefficient that ties trend and cycle component together, generating (spurious)

cyclical dynamics in the trend component.

Figure 2: Cyclical temperature anomalies: The plot shows estimated cyclical sea surface temper-
ature anomalies ĉt(yn:1, θ̂) from the fractional UC model. Shaded areas correspond to warm (red)
and cold (blue) periods according to the Oceanic Niño Index (ONI), see figure 1 for details.

Figure 2 shows the smoothed cyclical component ĉt(yn:1, ψ̂QML) for the fractional UC model.

As already noted above, the estimates for the autoregressive parameters as well as for the variance-

v5.php. As the ONI is not available for the years prior to 1950, I use the extended multivariate ENSO index (MEI.ext)
of Wolter and Timlin (2011) that starts in 1871 and can be downloaded from https://psl.noaa.gov/enso/mei.ext/.
The latter is scaled to arrive at the same standard deviation as the ONI. Since the MEI.ext is a bi-monthly rolling
average, a month is considered a cold (warm) month once the bi-monthly rolling average of the current and the
following month crosses the threshold.
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ratio of short- and long-run innovations attribute rich variation to the cyclical component and

generate a persistent series. Clearly, ĉt(yn:1, ψ̂QML) evolves along the Oceanic Niño index, as peaks

typically occur during El Niño phases and are followed by troughs during La Niña.

Figure A.2 highlights the differences between the smoothed cyclical component of the fractional

UC model and those of the three benchmarks. Setting the integration order to unity attributes ad-

ditional pro-cyclical variation (in terms of the ONI) to the smoothed cycle. This is straightforward,

as the smoothed trend component of the I(1) UC model was found to behave anti-cyclical. HP

filter and the I(2) UC model yield similar deviations from the cyclical component of the fractional

UC model. They dampen the cyclical variation, because their respective trend components follow

the observable series more closely, leaving fewer variation to be captured by the cycle.

Finally, figure A.3 plots the estimated autocorrelation function up to 48 lags for the one-step

ahead forecast errors of the fractional UC model and the two integer-integrated benchmarks. As

can be seen, misspecifying the integration order to either one or two generates spurious, strongly

persistent autocorrelation in the prediction errors, thus violating the MDS assumption. In contrast,

little to no autocorrelation is left in the prediction errors of the fractional UC models.

8 Conclusion

This paper introduces a novel unobserved components model in which the trend component is

specified as a type II fractionally integrated process. The model encompasses the bulk of unobserved

components models in the literature, allows for richer long-run dynamics beyond integer-integrated

specifications, and for a data-dependent specification of the trend. Trend and cycle are estimated

via the analytical solution to the optimization problem of the Kalman filter. The model allows

for a joint estimation of the integration order and the other model parameters via the conditional

sum-of-squares estimator, which is shown to be consistent and asymptotically normally distributed.

While the asymptotic estimation theory is derived for a prototypical model, it is shown to carry

over to models with deterministic components, correlated long- and short-run innovations, and

quasi-maximum likelihood estimation. For monthly global sea surface temperature anomalies, the

fractional unobserved components model reveals a smooth trend component that is increasing since

the mid of the 20th century, together with a rich cyclical component that matches the Oceanic Niño

index.

To applied researchers, the fractional unobserved components model offers a robust, flexible,

and data-driven method for signal extraction of data of unknown persistence. It does not require

prior assumptions about the integration order, nor the choice of any tuning parameter. Therefore,

it provides a solution to the model specification problem in the unobserved components literature,

and calls for further applications beyond temperature anomalies.
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A Additional figures and tables

Figure A.1: Smoothed trend component of monthly global sea surface temperature anomalies
(relative to 1900-2000 average in degrees Celsius) via the fractional UC model (red), the I(1) UC
model (green), the I(2) UC model (yellow), and the HP filter with λ = 14, 400 (purple). The
original series is plotted in black. Shaded areas correspond to warm (red) and cold (blue) periods
according to the Oceanic Niño Index (ONI), see figure 1 for details
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Figure A.2: Deviations from smoothed cyclical component of monthly global sea surface tempera-
ture anomalies (relative to 1900-2000 average in degrees Celsius): Figure (a) shows the smoothed
cyclical component of the fractional UC model, while all other plots show the deviations of the re-
spective smoothed cyclical component from the fractional UC model for (b) the I(1) UC model, (c)
the I(2) UC model, and (d) the HP filter with λ = 14, 400 (purple). Consequently, smoothed cycli-
cal components of the integer-integrated models are obtained by adding (a) to the second, third,
and fourth figure respectively. Shaded areas correspond to warm (red) and cold (blue) periods
according to the Oceanic Niño Index (ONI), see figure 1 for details
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Figure A.3: Estimated autocorrelation function of the prediction errors for the fractional UC model
(left), the I(1) UC model (center), and the I(2) UC model (right), together with 5% (red) and 1%
(blue) confidence bands.
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Trend Cycle

n ν0 d0 R2
CSS R2

QML R
I(1)2

CSS R
I(1)2

QML R2
CSS R2

QML R
I(1)2

CSS R
I(1)2

QML

100 1 .75 .506 .528 .484 .523 .839 .849 .814 .841
1.00 .751 .781 .762 .786 .771 .789 .776 .793
1.25 .901 .922 .865 .885 .702 .725 .621 .618
1.75 .984 .993 .679 .735 .536 .594 .045 .039

5 .75 .294 .306 .323 .329 .944 .948 .938 .943
1.00 .592 .609 .617 .633 .905 .911 .907 .918
1.25 .830 .842 .828 .818 .861 .870 .855 .799
1.75 .981 .983 .778 .717 .760 .781 .226 .084

10 .75 .229 .235 .278 .279 .965 .969 .961 .966
1.00 .511 .522 .550 .565 .935 .939 .938 .946
1.25 .780 .788 .791 .774 .897 .905 .899 .852
1.75 .975 .975 .859 .722 .816 .832 .440 .124

200 1 .75 .625 .637 .597 .628 .850 .857 .829 .849
1.00 .868 .877 .871 .879 .793 .802 .797 .805
1.25 .967 .971 .933 .943 .735 .746 .667 .644
1.75 .998 .999 .798 .831 .588 .626 .013 .013

5 .75 .394 .408 .405 .408 .945 .948 .942 .941
1.00 .743 .755 .748 .763 .909 .913 .911 .917
1.25 .929 .932 .925 .913 .872 .876 .867 .817
1.75 .997 .997 .847 .835 .788 .797 .149 .024

10 .75 .311 .320 .338 .330 .967 .968 .965 .963
1.00 .671 .681 .684 .697 .937 .939 .940 .944
1.25 .901 .903 .900 .883 .906 .908 .904 .857
1.75 .995 .996 .901 .830 .835 .841 .404 .037

300 1 .75 .689 .697 .664 .686 .856 .860 .835 .849
1.00 .909 .914 .912 .915 .801 .806 .804 .808
1.25 .982 .984 .964 .967 .744 .750 .703 .675
1.75 1.000 1.000 .826 .834 .610 .635 .008 .008

5 .75 .482 .488 .480 .477 .947 .948 .943 .940
1.00 .815 .823 .818 .828 .913 .915 .914 .917
1.25 .959 .961 .959 .949 .875 .878 .873 .833
1.75 .999 .999 .851 .839 .793 .800 .102 .013

10 .75 .394 .399 .404 .390 .967 .967 .965 .961
1.00 .759 .765 .766 .774 .939 .941 .940 .943
1.25 .941 .943 .941 .929 .908 .910 .907 .869
1.75 .998 .998 .919 .843 .838 .843 .388 .018

Table A.4: Coefficient of determination from regressing true trend and cycle xt and ct on their
respective estimates from the Kalman smoother for the uncorrelated UC models.
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Trend Cycle

n ν0 d0 R2
CSS R2

QML R
I(1)2

CSS R
I(1)2

QML R2
CSS R2

QML R
I(1)2

CSS R
I(1)2

QML

100 1 .75 .534 .573 .275 .291 .851 .868 .752 .751
1.00 .750 .782 .774 .774 .794 .823 .828 .825
1.25 .904 .911 .830 .799 .763 .777 .684 .608
1.75 .987 .986 .861 .802 .711 .607 .300 .124

5 .75 .426 .423 .422 .385 .949 .951 .948 .874
1.00 .664 .681 .720 .654 .925 .930 .934 .867
1.25 .861 .864 .848 .827 .900 .903 .885 .871
1.75 .980 .975 .883 .801 .827 .676 .484 .282

10 .75 .382 .385 .373 .350 .963 .970 .959 .903
1.00 .575 .615 .649 .578 .939 .950 .948 .873
1.25 .797 .823 .826 .786 .912 .921 .914 .885
1.75 .968 .971 .892 .793 .841 .740 .576 .421

200 1 .75 .657 .703 .342 .348 .869 .890 .733 .735
1.00 .883 .897 .903 .900 .840 .861 .875 .872
1.25 .971 .974 .914 .887 .830 .835 .702 .622
1.75 .998 .998 .910 .890 .791 .718 .234 .077

5 .75 .541 .549 .574 .468 .956 .958 .964 .866
1.00 .816 .829 .846 .817 .942 .946 .949 .926
1.25 .946 .949 .941 .938 .926 .931 .910 .913
1.75 .996 .997 .938 .896 .883 .788 .401 .154

10 .75 .475 .488 .498 .405 .968 .973 .973 .871
1.00 .752 .780 .810 .737 .952 .961 .965 .907
1.25 .918 .932 .930 .922 .936 .947 .931 .933
1.75 .995 .997 .955 .886 .898 .813 .506 .251

300 1 .75 .727 .772 .406 .412 .878 .900 .722 .725
1.00 .933 .941 .943 .941 .861 .878 .889 .886
1.25 .987 .988 .950 .932 .853 .858 .712 .648
1.75 1.000 .999 .931 .890 .819 .760 .208 .066

5 .75 .610 .620 .640 .552 .958 .961 .966 .900
1.00 .881 .891 .900 .892 .947 .951 .955 .950
1.25 .974 .976 .971 .970 .935 .938 .916 .920
1.75 .999 .999 .963 .906 .904 .829 .369 .111

10 .75 .539 .548 .554 .463 .969 .973 .974 .891
1.00 .830 .849 .871 .849 .956 .964 .968 .948
1.25 .958 .967 .964 .962 .943 .953 .935 .941
1.75 .999 .999 .979 .923 .918 .846 .461 .192

Table A.8: Coefficient of determination from regressing true trend and cycle xt and ct on their
respective estimates from the Kalman smoother for the correlated UC models.
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I(d) I(1) I(2)
Estimate Std. Error Estimate Std. Error Estimate Std. Error

d 1.753 0.061
σ2
η 1.351E-08 1.527E-08 1.032E-04 4.499E-05 6.179E-10 7.081E-10

σηε -2.202E-06 2.620E-06 -5.465E-04 1.402E-04 -1.094E-06 6.279E-07
σ2
ε 1.981E-03 6.171E-05 2.901E-03 2.313E-04 1.955E-03 6.103E-05
b1 -1.024 0.022 -0.997 0.020 -1.033 0.019
b2 0.101 0.031 0.094 0.024 0.137 0.014
b3 0.064 0.031 0.027 0.007 0.018 0.000
b4 -0.063 0.022 -0.033 0.012 -0.040 0.006

ν 1.466E+05 28.115 3.163E+06
ν2 -162.993 -5.296 -1.771E+03
ρ -0.426 -0.999 -0.996

logL(ψ) 5436.6 5428.1 5430.4
Q(y, ψ) 4.1315 4.9048 4.6589
AIC -10855.1 -10840.2 -10844.8
BIC -10804.4 -10795.1 -10799.6

Table A.9: Estimation results for monthly global temperature anomalies from the fractional UC
model, the I(1) UC model, and the I(2) UC model via the QML estimator. All three models
allow for correlated innovations. Optimization is carried out over ψ = (d, σ2

η, σηε, σ
2
ε , b1, ..., b4)′, and

estimates for ν, ν2, ρ are calculated based on the estimates of ψ. logL(ψ) denotes the log likelihood,
Q(y, ψ) denotes the conditional sum-of-squares, AIC is the Akaike Information Criterion, and BIC
is the Bayesian Information Criterion. Standard errors are obtained from the numerical Hessian
matrix.
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B Proof of theorem 4.1

Proof of theorem 4.1. Theorem 4.1 holds if the objective function (16) satisfies a uniform weak law

of large numbers (UWLLN), i.e. there exists a function gt(yt:1) ≥ 0 such that for all θ1, θ2 ∈ Θ,

it holds that |v2
t (θ1) − v2

t (θ2)| ≤ gt(yt:1)||θ1 − θ2||, and both, vt(θ) and gt(yt:1) satisfy a WLLN

(Wooldridge; 1994, thm. 4.2). Since v2
t (θ) is continuously differentiable, a natural choice for gt(yt:1)

is the supremum of the absolute gradient, as follows from the mean value expansion of v2
t (θ) about

θ, see Newey (1991, cor. 2.2) and Wooldridge (1994, eqn. 4.4).

However, as can be seen from (15), uniform convergence of the objective function fails around the

point d = d0−1/2: Since yt is I(d0), the d-th differences ∆d
+yt+1 = ξt+1(d) as well as Sdyt:1 = ξt:1(d)

are I(d0−d), and thus asymptotically stationary whenever d > d0− 1/2, otherwise non-stationary.

Subsequently, I will show that the pointwise probability limit of Q(y, θ) is given by

plimn→∞Q(y, θ) = plimn→∞ Q̃(y, θ) =

E(ṽ2
t (θ)) for d− d0 > −1/2,

∞ else,
(B.1)

where ṽt(θ) denotes the untruncated forecast error

ṽt(θ) = ξ̃t(d) +
∞∑
j=1

τj(θ)ξ̃t−j(d) =
∞∑
j=0

τj(θ)ξ̃t−j(d), (B.2)

generated by the untruncated fractional differencing polynomial ∆d and the untruncated poly-

nomial b(L,ϕ) =
∑∞

j=0 bj(ϕ)Lj . ξ̃t(d) = ∆d−d0ηt + ∆dct is the untruncated residual, while the

τj(θ) stem from the ∞-vector (τ1(θ), τ2(θ), · · · ) = ν(b1(ϕ)− π1(d), b2(ϕ)− π2(d), · · · )(B′ϕ,∞Bϕ,∞ +

νS′d,∞Sd,∞)−1S′d,∞, and τ0(θ) = 1 as before. Note that the dependence of the τj(θ) on t is resolved

in (B.2) by letting the dimension of the t-dimensional coefficient vector go to infinity. Hence, while

the truncated forecast errors in (15) are non-ergodic, the untruncated errors (B.2) are ergodic

within the stationary region of the parameter space where d− d0 > −1/2, as will become clear.

To deal with non-uniform convergence in (B.1), I adapt the proof strategy of Nielsen (2015)

for CSS estimation of ARFIMA models: I partition the parameter space for d into three compact

subsets D1 = D1(κ1) = D ∩ {d : d − d0 ≤ −1/2 − κ1}, D2 = D2(κ2, κ3) = D ∩ {d : −1/2 − κ2 ≤
d − d0 ≤ −1/2 + κ3}, and D3 = D3(κ3) = D ∩ {d : −1/2 + κ3 ≤ d − d0}, for some constants

0 < κ1 < κ2 < κ3 < 1/2 to be determined later. Note that ∪3
i=1Di = D. Within D1 and D3

convergence is uniform, while within the overlapping D2, which covers both stationary and non-

stationary forecast errors, convergence is non-uniform. Denote the partitioned parameter spaces

for θ as Θj = Dj × Σν × Φ, j = 1, 2, 3. Non-uniform convergence of (B.1) is then asymptotically

ruled out by showing that for a given constant K > 0 there always exists a fixed κ̄ > 0 such that

Pr

(
inf

d∈D\D3(κ̄),ν∈Σν ,ϕ∈Φ
Q(y, θ) > K

)
→ 1 as n→∞, (B.3)

which implies Pr(θ̂ ∈ D3(κ̄)×Σν ×Φ)→ 1, i.e. the parameter space asymptotically reduces to the

stationary region Θ3(κ̄) = D3(κ̄)×Σν ×Φ. The second part of the proof shows that within Θ(κ3),
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a UWLLN applies to the objective function, i.e. for any fixed κ3 ∈ (0, 1/2)

sup
θ∈D3(κ3)×Σν×Φ

∣∣Q(y, θ)− E(ṽ2
t+1(θ))

∣∣ p−→ 0, as n→∞, (B.4)

which holds if both the objective function and the supremum of its absolute gradient satisfy a

WLLN (Wooldridge; 1994, thm. 4.2). While the results in (B.3) and (B.4) are well established

for the CSS estimator in the ARFIMA literature, see Hualde and Robinson (2011) and Nielsen

(2015), showing them to carry over to the fractional UC model requires some additional effort.

Even within θ ∈ Θ3(κ3), the forecast errors in (14) are not ergodic for two reasons: First, since

the lag polynomial generated by the truncated fractional differencing polynomial ∆d
+ includes more

lags as t increases, ξt(d) = ∆d−d0
+ ηt + ∆d

+ct are not ergodic. Second, the τj(θ, t) in (15) depend

on t. Consequently, also within Θ3(κ3) a WLLN for stationary and ergodic processes does not

immediately apply. I tackle these problems by showing the expected difference between (15) and

(B.2) to be

E
[
(ṽt+1(θ)− vt+1(θ))2

]
→ 0, as t→∞, (B.5)

for all θ ∈ Θ3(κ3) (pointwise). As within Θ3(κ3), ṽt+1(θ) is stationary and ergodic, it follows by

(B.5) that the WLLN for stationary and ergodic processes carries over from ṽt+1(θ) to vt+1(θ)

Q(y, θ) = Q̃(y, θ) + op(1)
p−→ E(ṽ2

t (θ)), as n→∞. (B.6)

(B.6) can be generalized to uniform convergence by showing that a WLLN also holds for the

supremum of the absolute gradient, which yields (B.4). From (B.3) and (B.4), theorem 4.1 follows.

In the proofs, let z(j) denote the j-th entry of some vector z, and let Z(i,j) denote the (i, j)-th entry

(i.e. the entry in row i and column j) for some matrix Z.

Convergence on Θ3(κ3) and proof of (B.4) and (B.6) I begin with the case θ ∈ Θ3(κ3) =

D3(κ3)× Σν × Φ where vt(θ) is asymptotically stationary. To prove (B.5), I first show that

ṽt+1(θ)− vt+1(θ) =
t∑

j=0

τj(θ, t)
(
ξ̃t+1−j(d)− ξt+1−j(d)

)

+

∞∑
j=t+1

τj(θ)ξ̃t+1−j(d) +

t∑
j=0

(τj(θ)− τj(θ, t)) ξ̃t+1−j(d)

=
∞∑
j=0

φη,j(θ, t)ηt+1−j +
∞∑
j=0

φε,j(θ, t)εt+1−j ,

(B.7)

where φη,j(θ, t) isO((1+log(t+1))2(t+1)max(−d+d0,−ζ)−1) for j ≤ t, andO((1+log j)3jmax(−d+d0,−ζ)−1)

for j > t, whereas φε,j(θ, t) is O((1 + log(t + 1))2(t + 1)max(−d,−ζ)−1) for j ≤ t, and O((1 +

log j)4jmax(−d,−ζ)−1) for j > t. This can be verified by considering the three different terms in

(B.7) separately. For the first term, plugging in ξt(d) = ∆d−d0
+ ηt + ∆d

+ct, ξ̃t(d) = ∆d−d0ηt + ∆dct
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yields

t∑
j=0

τj(θ, t)
(
ξ̃t+1−j(d)− ξt+1−j(d)

)
=

∞∑
j=t+1

φ1,η,j(θ, t)ηt+1−j +
∞∑

j=t+1

φ1,ε,j(θ, t)εt+1−j , (B.8)

where φ1,η,j(θ, t) =
∑t

k=0 τk(θ, t)πj−k(d−d0), and φ1,ε,j(θ, t) =
∑t

k=0 τk(θ, t)
∑j−t−1

l=0 al(ϕ0)πj−k−l(d).

Using Johansen and Nielsen (2010, lemma B.4), who show
∑j−1

k=1 k
max(−d,−ζ)−1(j − k)−d+d0−1 ≤

K(1 + log j)jmax(−d+d0,−ζ)−1 for some finite constant K > 0, together with assumption 3, (D.1),

lemma D.2, and j > t, the coefficients in (B.8) are φ1,η,t = O((1 + log j)2jmax(−d+d0,−ζ)−1), and

φ1,ε,t = O((1 + log j)3jmax(−d,−ζ)−1).

Next, consider the second term in (B.7)

∞∑
j=t+1

τj(θ)ξ̃t+1−j(d) =

∞∑
j=t+1

ηt+1−jφ2,η,j(θ, t) +

∞∑
j=t+1

εt+1−jφ2,ε,j(θ, t), (B.9)

with φ2,ε,j(θ, t) =
∑j−t−1

k=0 τt+1+k(θ)
∑j−t−1−k

l=0 al(ϕ0)πj−t−1−k−l(d) = O((1 + log j)3jmax(−d,−ζ)−1),

and φ2,η,j(θ, t) =
∑j−t−1

k=0 πk(d − d0)τj−k(θ) = O((1 + log j)2jmax(−d+d0,−ζ)−1) by assumption 3,

lemma D.1 and lemma D.2.

For the third term in (B.7), by lemma D.3

t∑
j=0

(τj(θ)− τj(θ, t)) ξ̃t+1−j(d) = −
∞∑
j=0

ηt+1−j

min(j,t)∑
k=0

πj−k(d− d0)

∞∑
m=t+1

rτ,k,m(θ)

−
∞∑
j=0

εt+1−j

min(j,t)∑
k=0

( ∞∑
m=t+1

rτ,k,m(θ)

)
j−k∑
l=0

al(ϕ0)πj−k−l(d)

=
∞∑
j=0

φ3,η,j(θ, t)ηt+1−j +
∞∑
j=0

φ3,ε,j(θ, t)εt+1−j .

(B.10)

By lemma D.3,
∑∞

m=t+1 rτ,k,m(θ) = O((1 + log(t + 1))2(t + 1)max(−d,−ζ)−1), while πj(d − d0) =

O(j−d+d0−1) and
∑j−k

l=0 al(ϕ0)πj−k−l(d) = O((1 + log(j − k))(j − k)max(−d,−ζ)−1), see lemma D.1

together with Johansen and Nielsen (2010, lemma B.4). Thus, for j ≤ t, it holds that φ3,η,j(θ, t) =

−
∑min(j,t)

k=0

(∑∞
m=t+1 rτ,k,m(θ)

)
πj−k(d− d0) is O

(
(1 + log(t+ 1))2(t+ 1)max(−d+d0,−ζ)−1

)
, whereas

for j > t it is O
(
(1 + log j)3jmax(−d+d0,−ζ)−1

)
. Similarly, for j ≤ t, the coefficient φ3,ε,j(θ, t) =∑min(j,t)

k=0

(∑∞
m=t+1 rτ,k,m(θ)

)∑j−k
l=0 al(ϕ0)πj−k−l(d) is O

(
(1 + log(t+ 1))2(t+ 1)max(−d,−ζ)−1

)
, and

for j > t it is O
(
(1 + log j)4jmax(−d,−ζ)−1

)
. Together, (B.8), (B.9), (B.10) and the rates established

below prove (B.7).

(B.5) can be proven by noting that ṽt+1(θ) is stationary and ergodic, so that a WLLN for

stationary and ergodic processes applies. Thus, it is sufficient to consider

E[(ṽt+1(θ)−vt+1(θ))2] =

∞∑
j=1

[
φ2
η,j(θ, t) E(η2

t+1−j) + φ2
ε,j(θ, t) E(ε2t+1−j)

]
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=

t∑
j=1

O
(

(1 + log(t+ 1))4(t+ 1)2 max(−d+d0,−ζ)−2
)

+
∞∑

j=t+1

O
(

(1 + log(t+ 1))8(t+ 1)2 max(−d+d0,−ζ)−2
)

= o(1),

where the first equality follows by assumption 1, while the second follows from the convergence rates

of φη,j(θ, t), φε,j(θ, t) as derived above, and the third equality follows from ζ > 0 and d−d0 +1/2 >

κ3 > 0 for all θ ∈ Θ3(κ3). (B.5) follows directly. From the law of large numbers for stationary and

ergodic processes, (B.6) follows immediately.

(B.6) can be generalized to uniform convergence in probability by showing the supremum of the

absolute gradient to be bounded in probability for all θ ∈ Θ(κ3) and any κ3, see Newey (1991, cor.

2.2) and Wooldridge (1994, th. 4.2). Then (B.4) holds, so that the objective function satisfies a

UWLLN within the stationary region of the parameter space Θ3(κ3). The gradient of the objective

function is given by

∂Q(y, θ)

∂θ(l)
=

2

n

n∑
t=1

vt(θ)
∂vt(θ)

∂θ(l)
,

∂vt(θ)

∂θ(l)
=

t−1∑
j=1

∂τj(θ, t)

∂θ(l)
ξt−j(d) +

t−1∑
j=0

τj(θ, t)
∂ξt−j(d)

∂θ(l)
,

(B.11)

where θ(l) denotes the l-th parameter in θ. Now, denote τ̃i(L, θ) =
∑∞

j=0 τ̃i,j(θ)L
j as any polynomial

satisfying
∑∞

j=0 |τ̃i,j(θ)| <∞, i = 1, 2, uniformly in θ ∈ Θ. Then, for z1,t(θ) = ηt, z2,t(θ) = εt, and

for the set Θ̃{(d1, d2, ν, ϕ) ∈ D ×D × Σν × Φ : min(d1 + 1, d2 + 1, d1 + d2 + 1) ≥ a}, it holds that

sup
(d1,d2,ν,ϕ)∈Θ̃

∣∣∣∣∣ 1n
n∑
t=1

[
∂k∆d1

+

∂dk1

∞∑
m=0

τ̃i,m(θ)zi,t−m(θ)

][
∂l∆d2

+

∂dl2

∞∑
m=0

τ̃j,m(θ)zj,t−m(θ)

]∣∣∣∣∣
=

Op(1) for a > 0,

Op((log n)1+k+ln−a) for a ≤ 0,

(B.12)

i, j = 1, 2, k, l = 1, 2, ..., as shown by Nielsen (2015, lemma B.3). Now, note that by lemmas D.2

and D.4 both the coefficients τj(θ, t) and their partial derivatives satisfy the absolute summabil-

ity condition, i.e.
∑t−1

j=0 |τj(θ, t)| < ∞ and
∑t−1

j=0 |∂τj(θ, t)/∂θ(l)| < ∞ for all θ(l) and uniformly in

θ ∈ Θ. In addition, by assumption 3, the absolute summability condition also holds for the poly-

nomials
∑t−1

j=0 τj(θ, t)L
ja(L,ϕ0) and

∑t−1
j=0 ∂τj(θ, t)/(∂θ(l))L

ja(L,ϕ0). Furthermore, note that the

(truncated) fractional difference operator and the (truncated) polynomials
∑t−1

j=1 τj(θ, t)L
j as well

as their partial derivatives can be interchanged, e.g. ∆d
+

∑t−1
j=0 τj(θ, t)ηt−j =

∑t−1
j=0 τj(θ, t)∆

d
+ηt−j ,

as the sum is bounded at t− 1. Finally, for θ ∈ Θ3(κ3), it holds that d− d0 > −1/2, so that within

vt(θ) the term ∆d−d0
+ ηt is integrated of order smaller 1/2, and the same holds for the partial deriva-

tive ∂ξt(d)/∂d = (∂∆d−d0
+ /∂d)ηt + (∂∆d

+/∂d)ct. Thus, all terms in (B.11) satisfy the conditions

for (B.12) with a > 0. By (B.12), it follows that supθ∈Θ3(κ3)

∣∣∣∂Q(y,θ)
∂θ(l)

∣∣∣ = Op(1) for all entries in θ.

Hence, (B.6) holds uniformly in θ ∈ Θ3(κ3). As this holds for any κ3, this proves (B.4).
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Convergence on Θ2(κ1, κ2) Next, consider the case θ ∈ Θ2(κ1, κ2) = D2(κ1, κ2)×Σν×Φ. Then

for the objective function in (16), together with (15), it holds that

Q(y, θ) =
1

n

n∑
t=1

 t−1∑
j=0

τj(θ, t)ξt−j(d)

2

≥ 1

n

n∑
t=1

(
∆d−d0

+

t−1∑
j=0

τj(θ, t)ηt−j

)2

+
2

n

n∑
t=1

(
∆d−d0

+

t−1∑
j=0

τj(θ, t)ηt−j

)(
∆d

+

t−1∑
j=0

τj(θ, t)ct−j

)
,

(B.13)

where the fractional difference operator and the polynomial
∑t−1

j=0 τj(θ, t)L
j can be interchanged as

the latter is truncated at t− 1.

For the second term in (B.13), by lemma D.2
∑t−1

j=0 |τj(θ, t)| < ∞ , and by assumption 3 and

lemma D.2
∑∞

j=0

∑min(j,t−1)
k=0 |τj(θ, t)ak−j(ϕ0)| <∞ . Furthermore, as d > 0, d− d0 ≥ −1/2−κ2 >

−1, it holds that min(1 + d− d0, 1 + d, 1 + 2d− d0) = 1 + d− d0 > 0, so that by (B.12)

sup
θ∈Θ2(κ2,κ3)

∣∣∣∣∣∣ 1n
n∑
t=1

∆d−d0
+

t−1∑
j=0

τj(θ, t)ηt−j

∆d
+

t−1∑
j=0

τj(θ, t)ct−j

∣∣∣∣∣∣ = Op(1). (B.14)

Next, consider the first term in (B.13), for which one has by lemma D.3

∆d−d0
+

t−1∑
j=0

τj(θ, t)ηt−j = ∆d−d0
+

t−1∑
j=0

τj(θ)ηt−j + ∆d−d0
+

t−1∑
j=1

( ∞∑
i=t+1

rτ,j,i(θ)

)
ηt−j

= ∆d−d0
+

∞∑
j=0

τj(θ)ηt−j + rη,t(θ), (B.15)

where

rη,t(θ) = −∆d−d0
+

∞∑
j=t

τj(θ)ηt−j + ∆d−d0
+

t−1∑
j=1

ηt−j

∞∑
i=t+1

rτ,j,i(θ) = ∆d−d0
+

∞∑
j=1

αjηt−j , (B.16)

and αj =
∑∞

i=t+1 rτ,j,i(θ) for j < t and αj = −τj(θ) for j ≥ t. By lemmas D.2 and D.3, τj(θ) =

O
(
(1+log j)jmax(−d,−ζ)−1

)
and

∑∞
i=t+1 rτ,j,i(θ) = O

(
(1+log t)2tmax(−d,−ζ)−1

)
, so that αj = O

(
(1+

log t)2tmax(−d,−ζ)−1
)

for j < t and αj = O
(
(1+ log j)jmax(−d,−ζ)−1

)
for j ≥ t. Apply the Beveridge-

Nelson decomposition to rη,t(θ)

rη,t(θ) = ∆d−d0
+ ηt−1

∞∑
j=1

αj + ∆d−d0+1
+

∞∑
j=1

α∗jηt−j , α∗j = −
∞∑

i=j+1

αi, (B.17)

where
∑∞

j=1 αj = O((1 + log t)2tmax(−d,−ζ)). Again, by the Beveridge-Nelson decomposition for

∆d−d0
+

∑∞
j=0 τj(θ)ηt−j in (B.15)

∆d−d0
+

∞∑
j=0

τj(θ)ηt−j = ∆d−d0
+ ηt

∞∑
j=0

τj(θ) + ∆d−d0+1
+

∞∑
j=0

τ∗j (θ)ηt−j , (B.18)
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where τ∗j (θ) = −
∑∞

i=j+1 τi(θ), and
∑∞

j=0 τj(θ) = O(1) by lemma D.2. By (B.15), (B.17), and

(B.18), it follows for the first term in (B.13) that

1

n

n∑
t=1

(
∆d−d0

+

t−1∑
j=0

τj(θ, t)ηt−j

)2
≥ 1

n

n∑
t=1

(
∆d−d0

+ ηt

∞∑
j=0

τj(θ)
)2

(B.19)

+
2

n

n∑
t=1

(∆d−d0
+ ηt

∞∑
j=0

τj(θ)
)(

∆d−d0
+ ηt−1

∞∑
j=1

αj

) (B.20)

+
2

n

n∑
t=1

(∆d−d0
+ ηt

∞∑
j=0

τj(θ)
)(

∆d−d0+1
+

∞∑
j=0

τ∗j (θ)ηt−j

) (B.21)

+
2

n

n∑
t=1

(∆d−d0
+ ηt

∞∑
j=0

τj(θ)
)(

∆d−d0+1
+

∞∑
j=1

α∗jηt−j

) (B.22)

+
2

n

n∑
t=1

(∆d−d0+1
+

∞∑
j=0

τ∗j (θ)ηt−j

)(
∆d−d0

+ ηt−1

∞∑
j=1

αj

) (B.23)

+
2

n

n∑
t=1

(∆d−d0+1
+

∞∑
j=0

τ∗j (θ)ηt−j

)(
∆d−d0+1

+

∞∑
j=1

α∗jηt−j

) (B.24)

+
2

n

n∑
t=1

(∆d−d0
+ ηt−1

∞∑
j=1

αj

)(
∆d−d0+1

+

∞∑
j=1

α∗jηt−j

) . (B.25)

From (B.12), it immediately follows that (B.21) to (B.25) are Op(1), as d − d0 + 1 > 0 and

d − d0 > −1 for all θ ∈ Θ2(κ2, κ3). In addition, as
∑∞

j=1 αj = O((1 + log t)2tmax(−d,−ζ)) and

as
∑∞

j=0 τj(θ) is bounded away from zero by assumption 3, it follows that (B.19) asymptotically

dominates (B.20), so that the rate of convergence of (B.13) will depend solely on (B.19). The

asymptotic probability limit of the first term (B.19) is derived analogously to Nielsen (2015, pp.

163f) by defining wt =
∑N−1

i=0 πi(d − d0)ηt−i
∑∞

j=0 τj(θ) and ut =
∑t−1

i=N πi(d − d0)ηt−i
∑∞

j=0 τj(θ)

for some N ≥ 1 to be determined. Then ∆d−d0
+ ηt

∑∞
j=0 τj(θ) = wt + ut, and it holds for (B.19)

1

n

n∑
t=1

(
∆d−d0

+ ηt

∞∑
j=0

τj(θ)
)2
≥ 1

n

n∑
t=N+1

(
w2
t + 2wtut

)
. (B.26)

As shown by Nielsen (2015, p. 164), for some κ satisfying max(κ2, κ3) ≤ κ < 1/2, setting N = nα

with 0 < α < min
(

1/2−κ
1/2+κ ,

1/2
1/2+2κ

)
, it holds by Nielsen (2015, eqn. B.4 in lemma B.2) that

n−1
∑n

t=nα+1wtut
p−→ 0 uniformly in θ ∈ Θ2(κ, κ) ⊇ Θ2(κ2, κ3). As also shown by Nielsen (2015,

p. 164), the other term in (B.26) satisfies

sup
θ∈Θ2(κ,κ)

∣∣∣∣∣∣ 1n
n∑

t=nα+1

w2
t − σ2

η,0

( ∞∑
j=0

τj(θ)
)2

nα−1∑
j=0

π2
j (d− d0)

∣∣∣∣∣∣ p−→ 0, (B.27)

as n→∞, and by Nielsen (2015, lemma A.3) the latter sum is bounded from below by
∑nα−1

j=0 π2
j (d−
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d0) ≥ 1 + K 1−(n−1)−2ακ3

2κ3
for some K > 0. The limit of the fraction 1−(n−1)−2ακ3

2κ3
is discussed by

Nielsen (2015, p. 165): It increases in n from zero (for n = 2) to 1/(2κ3) as n→∞, and decreases

in κ3 from α log(n − 1) for κ3 = 0 to zero for κ3 → 1/2. Consequently 1−(n−1)−2ακ3

2κ3
→ ∞ as

(n, κ3) → (∞, 0). This, together with (B.19), (B.26), and (B.27) yields that the lower bound of
1
n

∑n
t=1(∆d−d0

+

∑t−1
j=0 τj(θ, t)ηt−j)

2 diverges in probability for θ ∈ Θ2(κ, κ) as (n, κ) → (∞, 0). By

(B.13), (B.14), and (B.15) the result of Nielsen (2015, eqn. 25) for ARFIMA models carries over

to the fractional UC model: For any K > 0, δ > 0, there exist κ̄3 > 0 and T2 ≥ 1 such that

Pr

(
inf

d∈D2(κ2,κ̄3),ν∈Σν ,ϕ∈Φ
Q(y, θ) > K

)
≥ 1− δ, for all T ≥ T2, (B.28)

and (B.28) holds for any κ2 ∈ (0, 1/2).

Convergence on Θ1(κ1) Finally, consider the non-stationary subset Θ1(κ1) = D1(κ1)×Σν ×Φ.

Starting again with (B.13) above, the second term in (B.13), by the same argument with respect

to absolute summability of the coefficients as for (B.14), is now

1

n

n∑
t=1

(
∆d−d0

+

t−1∑
j=0

τj(θ, t)ηt−j

)(
∆d

+

t−1∑
j=0

τj(θ, t)ct−j

)
= Op

(
1 + log(n)nd0−d−1

)
, (B.29)

for all θ ∈ Θ1(κ1) by (B.12) with d1 = d − d0, d2 = d, and thus is Op(1) for d − d0 > −1 and

Op(log(n)nd0−d−1) otherwise. As will be shown, the first term in (B.13) will asymptotically diverge

at a faster rate compared to the second term above. To see this, note that the decomposition of the

first term in (B.13) into ∆d−d0
+

∑∞
j=0 τj(θ)ηt−j and rη,t(θ) in (B.15) and (B.16) above also applies

in Θ1(κ1). Consequently, the Beveridge-Nelson decompositions in (B.17) and (B.18) also hold for

θ ∈ Θ1(κ1). Again, the decomposition in (B.19) to (B.25) applies, however the terms in (B.21) to

(B.25) will not necessarily be Op(1), since d− d0 is no longer bounded from above by −1 or by −2.

However, as will become clear, the first term (B.19) asymptotically dominates all other terms in

(B.20) to (B.25) and thus it will be sufficient to consider only this term.

To arrive at the desired result, consider n2(d−d0)
∑n

t=1(∆d−d0
+ ηt

∑∞
j=0 τj(θ))

2, a scaled version of

(B.19). It follows from the Cauchy-Schwarz inequality that

n2(d−d0)
n∑
t=1

(
∆d−d0

+ ηt

∞∑
j=0

τj(θ)
)2
≥
(
nd−d0−1/2

n∑
t=1

∆d−d0
+ ηt

∞∑
j=0

τj(θ)
)2
, (B.30)

where the scaling by nd−d0−1/2 is required for a functional central limit theorem later to hold.

The remaining proof for θ ∈ Θ1(κ1) follows Nielsen (2015, pp. 168f) and shows his results for

the CSS estimator for ARFIMA processes to carry over to the fractional UC model. As also shown

there, from Hosoya (2005, thm. 2) a functional central limit theorem for

rn(θ) = nd−d0−1/2
n∑
t=1

∆d−d0
+ ηt

∞∑
j=0

τj(θ) = nd−d0−1/2∆d−d0−1
+ ηn

∞∑
j=0

τj(θ) (B.31)
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follows if assumptions A(i) to A(iv) of Hosoya (2005) hold. Since 0 <
∑∞

j=0 |τj(θ)| < ∞ and

E(ηj |Ft) = 0 for all j > t, as well as E(ηjηk|Ft) − E(ηjηk) = 0 for j, k > t by assumption 1, it

follows that assumptions A(i) and A(ii) of Hosoya (2005) are satisfied. By Hosoya (2005, lemma

3), assumption A(iii) of Hosoya (2005) is satisfied if ηt is a fourth-order stationary process with

a bounded fourth-order cumulant spectral density, which is satisfied by assumption 1. Finally, by

Hosoya (2005, thm. 3) the respective assumption A(iv) is satisfied for the fourth-order stationary

process ηt if 2 > (2(d0 − d+ 1)− 1)−1 holds, which is equivalent to d0 − d > −1/4 and is satisfied

for all θ ∈ Θ1(κ1). By Hosoya (2005, thm. 2), as n→∞

nd−d0−1/2∆d−d0−1
+ ηbnrc

∞∑
j=0

τj(θ)⇒Wd0−d(r) in D[0, 1], (B.32)

for r ∈ [0, 1] and fixed d ∈ D1(κ1), where bnrc is the greatest integer smaller or equal to nr,

Wd0−d(r) = Γ(d0 − d+ 1)−1
∫ r

0 (r − s)d0−ddW (s) is fractional Brownian motion of type II, and W

denotes Brownian motion generated by ηt
∑∞

j=0 τj(θ). (B.32) is equivalent to Nielsen (2015, eqn. 30)

for the univariate case. From (B.32) it follows that rn(θ)
d−→ r(θ) = Wd0−d(1) for fixed d ∈ D1(κ1).

Pointwise convergence rn(θ) can be generalized to uniform convergence in D1(κ1) if rn(θ) is tight

(stochastically equicontinuous) as a function of θ on θ ∈ Θ1(κ1). Since the parameters ϕ, ν only

enter rn(θ) through
∑∞

j=0 τj(θ), it is sufficient for tightness of rn(θ) in θ that nd−d0−1/2∆d−d0−1
+ ηn

is tight in (d − d0). As in Nielsen (2015, pp. 169f), tightness in (d − d0) can be shown using

the moment condition in Billingsley (1968, thm. 12.3) which requires to show that rn(θ) is tight

for a fixed d − d0 and that |nd1−1/2∆d1−1
+ ηn − nd2−1/2∆d2−1

+ ηn| ≤ K|d1 − d2| for some constant

K > 0 that does not depend on n, d1, or d2, see Nielsen (2015, pp. 169f). As noted there, the

first condition is implied by pointwise convergence in probability and distribution, while the second

condition holds by Nielsen (2015, lemma B.1). Consequently, rn(θ)⇒ r(θ) in d ∈ D1(κ1), and thus

infθ∈Θ1(κ1) rn(θ)2 d−→ infθ∈Θ1(κ1) r(θ)
2.

Coming back to the first term of the objective function (B.13), for which a lower bound is given

by the expressions (B.19) to (B.25), note that by (B.30) the first term (B.19) is bounded from

below (when scaled appropriately) by

inf
θ∈Θ1(κ1)

1

n

n∑
t=1

(
∆d−d0

+ ηt

∞∑
j=0

τj(θ)
)2
≥ n2(d0−d−1/2) inf

θ∈Θ1(κ1)
rn(θ)2. (B.33)

The probability limits of (B.21) to (B.25) can be derived by (B.12) for d1 = d−d0 and d2 = d−d0+1,

and equal Op (1 + n−a log n), where a = min(1 + d − d0, 2 + 2(d − d0)). Thus, a = 1 + d − d0 if

d−d0 > −1, and a = 2+2(d−d0) if d−d0 ≤ −1. In the former case, a > 0, so that (B.21) to (B.25)

are Op(1). In the latter case, they are Op
(
n2(d0−d−1) log n

)
and thus diverge at a slower rate than

(B.19). For (B.20), note that
∑∞

j=1 αj = O((1 + log t)2tmax(−d,−ζ)), while
∑∞

j=0 τj(θ) is bounded

away from zero by assumption 3. Consequently, (B.20) will also diverge at a slower rate than (B.19).

Finally, as already shown in (B.29), the second term in (B.13) is Op
(
1 + log(n)nd0−d−1

)
and thus

is also dominated by (B.19). It follows that the rate of divergence of the objective function is

determined by the first term in (B.13) and is given by the divergence rate of (B.19). This, together
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with (B.33), yields

inf
θ∈Θ1(κ1)

Q(y, θ) ≥ n2(d0−d−1/2) inf
θ∈Θ1(κ1)

rn(θ)2 ≥ n2κ1 inf
θ∈Θ1(κ1)

rn(θ)2 (B.34)

as n → ∞. Thus, one obtains the result of Nielsen (2015, eqn. 34) that for any K > 0 and all

κ1 > 0

Pr

(
inf

d∈D1(κ1),ν∈Σν ,ϕ∈Φ

1

n
Q(y, θ) > K

)
→ 1, as T →∞. (B.35)

Together, (B.28) and (B.35) prove (B.3).

C Proof of theorem 4.2

Proof of theorem 4.2. Since θ̂ is consistent, see theorem 4.1, the asymptotic distribution theory can

be derived based on the Taylor series expansion of the score function as usual

0 =
√
n
∂Q(y, θ)

∂θ

∣∣∣∣∣
θ=θ̂

=
√
n
∂Q(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

+
√
n
∂2Q(y, θ)

∂θ∂θ′

∣∣∣∣∣
θ=θ̄

(
θ̂ − θ0

)
, (C.1)

where for the entries of θ̄ it holds that |θ̄(i) − θ0(i) | ≤ |θ̂(i) − θ0(i) | for all i = 1, ..., q + 2. The

normalized score at θ0 is

√
n
∂Q(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

=
2√
n

n∑
t=1

vt(θ0)
∂vt(θ)

∂θ

∣∣∣∣∣
θ=θ0

, (C.2)

with vt(θ) denoting the prediction error as defined in (14) and (15), and its partial derivative as

given in (B.11). Denote the normalized, untruncated score

√
n
∂Q̃(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

=
2√
n

n∑
t=1

ṽt(θ0)
∂ṽt(θ)

∂θ

∣∣∣∣∣
θ=θ0

, (C.3)

with ṽt(θ) as defined in (B.2). As shown in lemma D.6, the difference between truncated and untrun-

cated score is asymptotically negligible. Therefore it is sufficient to consider the distribution of the

latter. By assumption 5, the untruncated prediction error ṽt(θ0) is a stationary MDS when adapted

to F ξ̃t = σ(ξ̃s, s ≤ t). Thus, for (C.3) a central limit theorem can be shown to apply following Nielsen

(2015, p. 175): By the Cramér-Wold device it is sufficient to show that for any q + 2-dimensional

vector µ, µ′
√
n∂Q̃(y,θ)

∂θ

∣∣
θ=θ0

=
√
n
∑q+2

i=1 µ(i)

(
∂Q̃(y,θ)
∂θ

∣∣
θ=θ0

)
(i)

= 2√
n

∑q+2
i=1 µ(i)

∑n
t=1 ṽt(θ0)(h̃1,t +

h̃2,t)(i)
d−→ N(0, 4σ2

v,0µ
′Ω0µ) as n → ∞, with h̃1,t =

∑∞
j=1

∂τj(θ)
∂θ

∣∣∣
θ=θ0

ξ̃t−j(d0), as well as h̃2,t =∑∞
j=0 τj(θ0)

∂ξ̃t−j(d)
∂θ

∣∣∣
θ=θ0

. As h̃1,t and h̃2,t are F ξ̃t−1-measurable, νt =
∑q+2

i=1 µ(i)ṽt(θ0)(h̃1,t + h̃2,t)(i)

together with F ξ̃t is a MDS. Thus, by the law of large numbers for stationary and ergodic processes,
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it holds that

1

n

n∑
t=1

E
(
ν2
t |F

ξ̃
t−1

)
=

1

n

n∑
t=1

q+2∑
i,j=1

µ(i)µ(j)σ
2
v,0(h̃1,t + h̃2,t)(i)(h̃1,t + h̃2,t)(j)

=

q+2∑
i,j=1

µ(i)µ(j)σ
2
v,0

1

n

n∑
t=1

(h̃1,t + h̃2,t)(i)(h̃1,t + h̃2,t)(j)
p−→ σ2

v,0

q+2∑
i,j=1

µ(i)µ(j)Ω0(i,j) ,

with σ2
v,0 = E(ṽ2

t (θ0)|F ξ̃t−1) = E(ṽ2
t (θ0)), and Ω0(i,j) = E

[
∂ṽt(θ)
∂θ(i)

∣∣
θ=θ0

∂ṽt(θ)
∂θ(j)

∣∣
θ=θ0

]
. Finally, the

Lindeberg criterion is satisfied as ṽt(θ0) is stationary. It follows directly that
√
n∂Q(y,θ)

∂θ

∣∣
θ=θ0

=
√
n∂Q̃(y,θ)

∂θ

∣∣
θ=θ0

+ op(1)
d−→ N(0, 4σ2

v,0Ω0).

Next, consider the second derivatives in (C.1). By Johansen and Nielsen (2010, lemma A.3),

the Hessian matrix in (C.1) can be evaluated at the true parameters θ0 if θ̂ is consistent and if the

second derivatives are tight (stochastically equicontinuous). As also discussed by Nielsen (2015) for

the CSS estimator of ARFIMA models, tightness holds for the second derivatives if its derivatives

are uniformly dominated in d ∈ D3 as defined in the proof of theorem 4.1, ν ∈ Σν as defined in

section 4, and ϕ ∈ Nδ(ϕ0) as defined in assumptions 2 and 4, by a random variable Bn = Op(1),

see Newey (1991, cor. 2.2). This holds by lemma D.7. Therefore, the second derivative in (C.1)

can be evaluated at the true value θ0

∂2Q(y, θ)

∂θ(k)∂θ(l)

∣∣∣∣∣
θ=θ0

=
2

n

n∑
t=1

∂vt(θ)

∂θ(k)

∣∣∣∣∣
θ=θ0

∂vt(θ)

∂θ(l)

∣∣∣∣∣
θ=θ0

+
2

n

n∑
t=1

vt(θ0)
∂2vt(θ)

∂θ(k)∂θ(l)

∣∣∣∣∣
θ=θ0

, (C.4)

k, l = 1, 2, ..., q + 2. By lemma D.8, as t→∞,

E

[(
∂ṽt(θ)

∂θ
− ∂vt(θ)

∂θ

) ∣∣∣∣∣
θ=θ0

(
∂ṽt(θ)

∂θ′
− ∂vt(θ)

∂θ′

) ∣∣∣∣∣
θ=θ0

]
p−→ 0.

From the law of large numbers for stationary and ergodic processes, it then holds for the first

term in (C.4) that 1
n

∑n
t=1

∂ṽt(θ)
∂θ

∂ṽt(θ)
∂θ′ = 1

n

∑n
t=1

∂vt(θ)
∂θ

∂vt(θ)
∂θ′ + op(1). In addition, by lemma D.9

the second term in (C.4) is 2
n

∑n
t=1 vt(θ0)∂

2vt(θ)
∂θ∂θ′

∣∣
θ=θ0

= 2
n

∑n
t=1 ṽt(θ0)∂

2ṽt(θ)
∂θ∂θ′

∣∣
θ=θ0

+ op(1). As

(ṽt(θ0),F ξ̃t ) is a stationary MDS, while the second partial derivatives are F ξ̃t−1-measurable, it holds

that 2
n

∑n
t=1 ṽt(θ0)∂

2ṽt(θ)
∂θ∂θ′

∣∣
θ=θ0

= op(1). Taken together, this implies for (C.4) that

∂2Q(y, θ)

∂θ(k)∂θ(l)

∣∣∣∣∣
θ=θ0

=
2

n

n∑
t=1

∂ṽt(θ)

∂θ(k)

∣∣∣∣∣
θ=θ0

∂ṽt(θ)

∂θ(l)

∣∣∣∣∣
θ=θ0

+ op(1). (C.5)

Finally, from the law of large numbers, it follows that ∂2Q(y,θ)
∂θ(k)∂θ(l)

∣∣
θ=θ0

p−→ 2Ω0(k,l) . Thus, solving

(C.1) for
√
n(θ̂ − θ0) yields the desired result

√
n(θ̂ − θ0) = −

[
∂2Q(y, θ)

∂θ∂θ′

]−1

θ=θ̄

√
n
∂Q(y, θ)

∂θ′

∣∣∣∣∣
θ=θ0

d−→ N(0, σ2
v,0Ω−1

0 ).
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D Additional lemmas

In what follows, let z(j) denote the j-th entry for some vector z, and let Z(i,j) denote the (i, j)-th

entry (i.e. the entry in row i and column j) for some matrix Z.

Lemma D.1 (Convergence rates of πj(d), bj(ϕ), and related vector and matrix entries). It holds

that

πj(d) = O(j−d−1), (D.1)

bj(ϕ) = O(j−ζ−1), (D.2)

(B′ϕ,tBϕ,t)(i,j) =

O(|i− j|−ζ−1) for i 6= j,

O(1) for i = j,
(D.3)

(S′d,tSd,t)(i,j) =

O(|i− j|−d−1) for i 6= j,

O(1) for i = j,
(D.4)

(B′ϕ,tBϕ,t)
−1
(i,j) =

O(|i− j|−ζ−1) for i 6= j,

O(1) for i = j,
(D.5)

(Bϕ,tBϕ,t + νS′d,tSd,t)
−1
(i,j) =

O(|i− j|max(−d,−ζ)−1) for i 6= j,

O(1) for i = j,
(D.6)

(B′ϕ,tβt)(j) = O((t− j + 1)−ζ−1), (D.7)

(S′d,tst)(j) = O((t− j + 1)−d−1), (D.8)

with πj(d) as defined in (3), bj(ϕ) as defined below assumption 3, Bϕ,t and Sd,t as defined in (5),

and β′t = (bt(ϕ) · · · b1(ϕ)), s′t = (πt(d) · · ·π1(d)).

Proof of Lemma D.1. (D.1) follows by Johansen and Nielsen (2010, lemma B.3) while (D.2) follows

by assumption 3. (D.3) follows from (D.2) by (B′ϕ,tBϕ,t)(i,j) =
∑min(i,j)−1

k=0 bk(ϕ)bk+|i−j|(ϕ) = O(|i−
j|−ζ−1)

∑min(i,j)−1
k=0 bk(ϕ) = O(|i− j|−ζ−1) for i 6= j, and (B′ϕ,tBϕ,t)(i,i) =

∑i−1
k=0 b

2
k(ϕ) = O(1). The

proof for (D.4) is analogous and follows from (D.1), as (S′d,tSd,t)(i,j) =
∑min(i,j)−1

k=0 πk(d)πk+|i−j|(d) =

O(|i− j|−d−1) for i 6= j, (S′d,tSd,t)(i,i) = O(1).

To derive the convergence rates for the entries of (B′ϕ,tBϕ,t)
−1 and (B′ϕ,tBϕ,t+νS′d,tSd,t)

−1 in (D.5)

and (D.6), note that as t→∞, B′ϕ,tBϕ,t and B′ϕ,tBϕ,t+νS
′
d,tSd,t converge to the Toeplitz matrices10

Tt(f1) and Tt(f2) with symbols f1(λ) = (2π)−1
∑∞

j=0 γ1(j)eiλj , γ1(j) =
∑∞

k=0 bk(ϕ)bk+j(ϕ), f2(λ) =

(2π)−1
∑∞

j=0 γ2(j)eiλj , γ2(j) =
∑∞

k=0 [bk(ϕ)bk+j(ϕ) + νπk(d)πk+j(d)], where γ1(j) = O(j−ζ−1) and

γ2(j) = O(jmax(−d,−ζ)−1) as j →∞. Consequently, (B′ϕ,tBϕ,t)
−1 and (B′ϕ,tBϕ,t + νS′d,tSd,t)

−1 con-

verge to the Toeplitz matrices Tt(1/f1) and Tt(1/f2) that exist by assumption 3. Denote the respec-

tive spectral densities as 1/f1(λ) = (2π)−1
∑∞

j=0 γ3(j)eiλj and 1/f4(λ) = (2π)−1
∑∞

j=0 γ4(j)eiλj .

10Gray (2006) provides a good overview about the asymptotic behavior of Toeplitz matrices.

48



Then the convergence rate of γ3(j) can be obtained from the partial derivative (∂/∂λ)[1/f1(λ)] =

(2π)−1
∑∞

j=0 ijγ3(j)eiλj = −f1(λ)−2(2π)−1
∑∞

j=0 ijγ1(j)eiλj , where jγ1(j) = O(j−ζ), so that jγ3(j) =

O(j−ζ) as f1(λ) is bounded away from zero by assumption 3. It follows that γ3(j) = O(j−ζ−1).

Similarly, it can be shown that γ4(j) = O(jmax(−d,−ζ)−1). As the j-th descending diagonals of

(B′ϕ,tBϕ,t)
−1 and (B′ϕ,tBϕ,t + νS′d,tSd,t)

−1 converge to γ3(j) and γ4(j) as t→∞, one has (D.5) and

(D.6).

(D.7) follows immediately from (D.2), since (B′ϕ,tβt)(j) =
∑j−1

k=0 bk(ϕ)bt−j+k+1(ϕ) = O((t − j +

1)−ζ−1)
∑j−1

k=0 bk(ϕ) = O((t−j+1)−ζ−1), while (D.8) follows immediately from (D.1) by (S′d,tst+1)(j) =∑j−1
k=0 πk(d)πt−j+k+1(d) = O((t− j + 1)−d−1)

∑j−1
k=0 πk(d) = O((t− j + 1)−d−1).

Lemma D.2 (Convergence rates of τj(θ, t)). For the coefficients τj(θ, t) as defined in (15) and

below, it holds that

τj(θ, t) = O
(

(1 + log j)jmax(−d,−ζ)−1
)
. (D.9)

Proof of Lemma D.2. To prove (D.9), consider τj(θ, t) as defined in (15) and below

τj(θ, t) = ν

t∑
k=1

[ (
b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d)

)
(B′ϕ,tBϕ,t + νS′d,tSd,t)

−1
]

(k)
Sd,t(j,k) . (D.10)

The left term in (D.10) is[(
b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d)

)
(B′ϕ,tBϕ,t + νS′d,tSd,t)

−1
]

(k)

= (bk(ϕ)− πk(d)) (B′ϕ,tBϕ,t + νS′d,tSd,t)
−1
(k,k)

+
k−1∑
i=1

(bi(ϕ)− πi(d)) (B′ϕ,tBϕ,t + νS′d,tSd,t)
−1
(i,k)

+

t∑
i=k+1

(bi(ϕ)− πi(d)) (B′ϕ,tBϕ,t + νS′d,tSd,t)
−1
(i,k).

(D.11)

Note that πk(d) = O(k−d−1), bk(ϕ) = O(k−ζ−1), (B′ϕ,tBϕ,t+νS′d,tSd,t)
−1
(k,k) = O(1), and (B′ϕ,tBϕ,t+

νS′d,tSd,t)
−1
(i,k) = O(|i− k|max(−d,−ζ)−1) for i 6= k by (D.1), (D.2), and (D.6). Thus, the first term in

(D.11) is O
(
kmax(−d,−ζ)−1

)
, while the second term is

∑k−1
i=1 O

(
imax(−d,−ζ)−1(k − i)max(−d,−ζ)−1

)
=

O
(
(1 + log k)kmax(−d,−ζ)−1

)
, where the last equality follows from Johansen and Nielsen (2010,

lemma B.4), who show that
∑k−1

i=1 i
max(−d,−ζ)−1(k − i)max(−d,−ζ)−1 = O((1 + log k)kmax(−d,−ζ)−1).

Analogously, it holds for the third term in (D.11) that
∑t

i=k+1O
(
imax(−d,−ζ)−1(i− k)max(−d,−ζ)−1

)
=

O((k + 1)max(−d,−ζ)−1
∑t

i=k+1(i− k)max(−d,−ζ)−1) = O((k + 1)max(−d,−ζ)−1). Therefore[(
b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d)

)
(B′ϕ,tBϕ,t + νS′d,tSd,t)

−1
]

(k)

= O
(

(1 + log k)kmax(−d,−ζ)−1
)
.

(D.12)
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By plugging (D.12) into (D.10) and using (5) together with (D.1), one obtains[(
b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d)

)
(B′ϕ,tBϕ,t + νS′d,tSd,t)

−1S′d,t

]
(j)

=

t∑
k=j

[(
b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d)

)
(B′ϕ,tBϕ,t + νS′d,tSd,t)

−1
]

(k)
πk−j(d)

= O
(

(1 + log j)jmax(−d,−ζ)−1
)

+O
( t∑
k=j+1

(1 + log k)kmax(−d,−ζ)−1(k − j)−d−1
)

= O
(

(1 + log j)jmax(−d,−ζ)−1
)

+O
(

(1 + log j)jmax(−d,−ζ)−1
t−j∑
k=1

k−d−1
)

= O
(

(1 + log j)jmax(−d,−ζ)−1
)
, (D.13)

since
∑t−j

k=1 k
−d−1 = O(1) for all d > 0. This proves (D.9).

Lemma D.3 (Convergence of τj(θ, t) as t → ∞). For the coefficients τj(θ, t) as defined in (15)

and below, it holds that

τj(θ, t) = τj(θ, t+ 1) + rτ,j,t+1(θ), (D.14)

where rτ,j,t+1(θ) = O
(
(1 + log(t+ 1))2(t+ 1)max(−d,−ζ)−1(1 + log(t+ 1− j))2(t+ 1− j)max(−d,−ζ)−1

)
.

Proof of Lemma D.3. To prove (D.14), I study the impact of an increase from t to t+1 on τj(θ, t+

1) = ν[(b1(ϕ)− π1(d) · · · bt+1(ϕ)− πt+1(d))(B′ϕ,t+1Bϕ,t+1 + νS′d,t+1Sd,t+1)−1S′d,t+1](j). Denote

Bϕ,t+1 =

[
Bϕ,t βt

01×t 1

]
, Sd,t+1 =

[
Sd,t st

01×t 1

]
, (D.15)

with βt = (bt(ϕ) · · · b1(ϕ))′ and st = (πt(d) · · ·π1(d))′. Let Ξt+1(θ) = (B′ϕ,t+1Bϕ,t+1+νS′d,t+1Sd,t+1)−1.

Then, by the Sherman-Morrison formula

Ξt+1(θ) =

[
Ξt(θ) +R1 R2

R′2 R3

]
, (D.16)

with the block entries

R3 = [(1 + β′tβt + ν + νs′tst)− (β′tBϕ,t + νs′tSd,t)Ξt(θ)(B
′
ϕ,tβt + νS′d,tst)]

−1,

R2 = −R3Ξt(θ)(B
′
ϕ,tβt + νS′d,tst),

R1 = R3Ξt(θ)(B
′
ϕ,tβt + νS′d,tst)(β

′
tBϕ,t + νs′tSd,t)Ξt(θ).

50



Clearly R3 = O(1), since by (D.6), (D.7) and (D.8)

[(β′tBϕ,t + νs′tSd,t)Ξt(θ)](j) = O
( j−1∑
i=1

(t+ 1− i)max(−d,−ζ)−1(j − i)max(−d,−ζ)−1
)

+O((t+ 1− j)max(−d,−ζ)−1) +O
( t−j∑
i=1

(t+ 1− i− j)max(−d,−ζ)−1imax(−d,−ζ)−1
)

= O
(

(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1
)
, (D.17)

and again by (D.7) and (D.8)

(β′tBϕ,t + νs′tSd,t)Ξt(θ)(B
′
ϕ,tβt + νS′d,tst)

= O
( t∑
j=1

(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1(t+ 1− j)max(−d,−ζ)−1
)
,

which is O(1). This, together with 1 +β′tβt+ν+νs′tst =
∑t

j=0 b
2
j (ϕ) +ν

∑t
j=0 π

2
j (d) = O(1), yields

R−1
3 = O(1). Furthermore, R−1

3 is bounded away from zero, as Ξt(θ)
−1 is regular by assumption 3.

For R2, by (D.17) it follows that R2(j) = O
(
(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1

)
. Finally,

for R1, by (D.17) it follows that R1(i,j) = O
(
(1 + log(t + 1 − i))(t + 1 − i)max(−d,−ζ)−1(1 + log(t +

1− j))(t+ 1− j)max(−d,−ζ)−1
)
.

Next, consider the vector

(b1(ϕ)− π1(d) · · · bt+1(ϕ)− πt+1(d))(B′ϕ,t+1Bϕ,t+1 + νS′d,t+1Sd,t+1)−1

=
(

(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))[Ξt(θ) +R1] + (bt+1(ϕ)− πt+1(d))R′2 R4

)
,

where R4 = (b1(ϕ)−π1(d) · · · bt(ϕ)−πt(d))R2 +(bt+1(ϕ)−πt+1(d))R3. By (D.1) and (D.2), it holds

for the terms in R4 that [bt+1(ϕ)−πt+1(d)]R3 = O((t+1)max(−d,−ζ)−1), and (b1(ϕ)−π1(d) · · · bt(ϕ)−
πt(d))R2 = O

(∑t
j=1 j

max(−d,−ζ)−1(1+log(t+1−j))(t+1−j)max(−d,−ζ)−1
)

= O
(
(1+log(t+1))2(t+

1)max(−d,−ζ)−1
)
. Thus R4 = O

(
(1 + log(t + 1))2(t + 1)max(−d,−ζ)−1

)
. Analogously, for the other

terms in the above vector, one has [(bt+1(ϕ) − πt+1(d))R′2](j) = O
(
(t + 1)max(−d,−ζ)−1(1 + log(t +

1 − j))(t + 1 − j)max(−d,−ζ)−1
)
, and [(b1(ϕ) − π1(d) · · · bt(ϕ) − πt(d))R1](j) = O

(
(1 + log(t + 1 −

j))(t + 1 − j)max(−d,−ζ)−1
∑t

i=1(1 + log(t + 1 − i))(t + 1 − i)max(−d,−ζ)−1imax(−d,−ζ)−1
)

= O
(
(1 +

log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1(1 + log(t+ 1))2(t+ 1)max(−d,−ζ)−1
)
. Therefore, for j = 1, ..., t,

the whole term τj(θ, t+ 1) is

τj(θ, t+ 1) = ν
(

(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S
′
d,t +R′5

)
(j)

= τj(θ, t) + νR5(j) , (D.18)

where R′5 = [bt+1(ϕ)− πt+1(d)]R′2S
′
d,t +R4s

′
t + (b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))R1S

′
d,t. For R5

[R′2S
′
d,t](j) =

t∑
i=j

R2(i)πi−j(d) = R2(j) +

t−j∑
i=1

R2(i+j)πi(d)

= O
(

(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1
)
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+O
(

(1 + log(t+ 1− j))
t−j∑
i=1

(t+ 1− i− j)max(−d,−ζ)−1i−d−1
)

= O
(

(1 + log(t+ 1− j))2(t+ 1− j)max(−d,−ζ)−1
)
,

so that [(bt+1(ϕ)−πt+1(d))R′2S
′
d,t](j) = O

(
(t+1)max(−d,−ζ)−1(1+log(t+1−j))2(t+1−j)max(−d,−ζ)−1

)
,

while [R4s
′
t](j) = O

(
(1 + log(t+ 1))2(t+ 1)max(−d,−ζ)−1(t+ 1− j)−d−1

)
. Furthermore

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))R1S
′
d,t](j) =

t∑
i=j

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))R1](i)πi−j(d)

=[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))R1](j) +

t−j∑
i=1

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))R1](i+j)πi(d)

=O
(
(1 + log(t+ 1))2(t+ 1)−min(d,ζ)−1(1 + log(t+ 1− j))2(t+ 1− j)−min(d,ζ)−1

)
.

Hence, R5(j) = O
(
(1 + log(t + 1))2(t + 1)max(−d,−ζ)−1(1 + log(t + 1 − j))2(t + 1 − j)max(−d,−ζ)−1

)
.

This completes the proof of (D.14).

Lemma D.4 (Convergence rates for partial derivatives of τj(θ, t)). For the partial derivatives of

the coefficients τj(θ, t), as defined in (15) and below, it holds that

∂τj(θ, t)

∂d
= O

(
(1 + log j)4jmax(−d,−ζ)−1

)
, (D.19)

∂τj(θ, t)

∂ν
= O

(
(1 + log j)3jmax(−d,−ζ)−1

)
, (D.20)

∂τj(θ, t)

∂ϕ(l)
= O

(
(1 + log j)3jmax(−d,−ζ)−1

)
, (D.21)

where ϕ(l) denotes the l-th entry of ϕ, l = 1, ..., q.

Proof of Lemma D.4. Denote π̇j(d) = ∂πj(d)/∂d = O((1 + log j)j−d−1), see Johansen and Nielsen

(2010, lemma B.3), and ḃj(ϕ(l)) = ∂bj(ϕ)/∂ϕ(l) = O(j−ζ−1) by assumption 3. Furthermore, denote

the partial derivatives of Sd,t and Bϕ,t as

Ṡd,t =
∂Sd,t
∂d

=


0 π̇1(d) · · · π̇t−1(d)

0 0 · · · π̇t−2(d)
...

...
. . .

...

0 0 · · · 0

 , Ḃϕ(l),t =
∂Bϕ,t
∂ϕ(l)

=


0 ḃ1(ϕ(l)) · · · ḃt−1(ϕ(l))

0 0 · · · ḃt−2(ϕ(l))
...

...
. . .

...

0 0 · · · 0

 ,

and note that [Ṡ′d,tSd,t](1,j) = 0 for all j = 1, ..., t, while for 1 < i ≤ t it holds that

[Ṡ′d,tSd,t](i,j) =


∑i−1

k=1 π̇k(d)πk+j−i(d) = O((1 + j − i)−d−1) if i ≤ j,∑j−1
k=0 πk(d)π̇k+i−j(d) = O((1 + log(i− j))(i− j)−d−1) if i > j.

(D.22)

52



Similarly, [Ḃ′ϕ(l),t
Bϕ,t](1,j) = 0 for all j = 1, ..., t, while for 1 < i ≤ t one has

[Ḃ′ϕ(l),t
Bϕ,t](i,j) =


∑i−1

k=1 ḃk(ϕ(l))bk+j−i(ϕ) = O((1 + j − i)−ζ−1) if i ≤ j,∑j−1
k=0 bk(ϕ)ḃk+i−j(ϕ(l)) = O((i− j)−ζ−1) if i > j.

(D.23)

In addition, denote Ξt(θ) = (B′ϕ,tBϕ,t + νS′d,tSd,t)
−1 to simplify the notation. Starting with the

partial derivatives ∂τj(θ, t)/∂d, one has

∂τj(θ, t)

∂d
= −ν2

[
(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))× Ξt(θ)(Ṡ

′
d,tSd,t + S′d,tṠd,t)Ξt(θ)S

′
d,t

]
(j)

+ ν[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)Ṡ
′
d,t](j) − ν[(π̇1(d) · · · π̇t(d))Ξt(θ)S

′
d,t](j).

(D.24)

For the first term, note that by (D.22) [Ṡ′d,tSd,t + S′d,tṠd,t](i,j) = [Ṡ′d,tSd,t](i,j) + [Ṡ′d,tSd,t](j,i) =

O((1 + log |i− j|)|i− j|−d−1) for i 6= j, and [Ṡ′d,tSd,t + S′d,tṠd,t](i,i) = O(1). Together with (D.12) it

follows for the first terms in (D.24) that

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ṡ
′
d,tSd,t + S′d,tṠd,t)](j)

=O
(

(1 + log j)jmax(−d,−ζ)−1
)

+O
( j−1∑
i=1

(1 + log i)imax(−d,−ζ)−1(1 + log(j − i))(j − i)−d−1
)

+O
( t∑
i=j+1

(1 + log i)imax(−d,−ζ)−1(1 + log(i− j))(i− j)−d−1
)

=O
(

(1 + log j)3jmax(−d,−ζ)−1
)
, (D.25)

where for the last equality, note that the second term satisfies
∑j−1

i=1 i
max(−d,−ζ)−1(j − i)−d−1 =

O
(
(1 + log j)jmax(−d,−ζ)−1

)
, see Johansen and Nielsen (2010, lemma B.4), and that it dominates

the first and third term above. Taking into account the next product term for the first term in

(D.24), by (D.6) and (D.25)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ṡ
′
d,tSd,t + S′d,tṠd,t)Ξt(θ)](j)

=O
(

(1 + log j)3jmax(−d,−ζ)−1
)

+O
( j−1∑
i=1

(1 + log i)3imax(−d,−ζ)−1(j − i)max(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)3imax(−d,−ζ)−1(i− j)max(−d,−ζ)−1
)

= O
(

(1 + log j)4jmax(−d,−ζ)−1
)
, (D.26)

where the proof is the same as for (D.25) besides the additional log-factor. Adding the last term,

it follows by (D.1) and (D.26) that

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ṡ
′
d,tSd,t + S′d,tṠd,t)Ξt(θ)S

′
d,t](j)
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=

t∑
i=j

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ṡ
′
d,tSd,t + S′d,tṠd,t)Ξt(θ)](i)πi−j(d)

= O
(

(1 + log j)4jmax(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)4imax(−d,−ζ)−1(i− j)−d−1
)

= O
(

(1 + log j)4jmax(−d,−ζ)−1
)
, (D.27)

where the second equality uses π0(d) = 1 to obtain the first term, while the last equality uses∑t−j
i=1 i

−d−1 = O(1), which holds for all d > 0. Consequently, the first term in (D.24) is bounded

by O
(
(1 + log j)4jmax(−d,−ζ)−1

)
. Turning to the second term in (D.24), by (D.12)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)Ṡ
′
d,t](j)

=

t∑
i=j+1

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)](i)π̇i−j(d)

= O
( t∑
i=j+1

(1 + log i)imax(−d,−ζ)−1(1 + log(i− j))(i− j)−d−1
)

= O
(

(1 + log j)jmax(−d,−ζ)−1
)
, (D.28)

where the last equality follows from
∑t−j

i=1(1 + log i)i−d−1 = O(1) for all d > 0. By an analogous

proof, the third term in (D.24) is

[(π̇1(d) · · · π̇t(d))Ξt(θ)S
′
d,t](j) =

t∑
i=j

[(π̇1(d) · · · π̇t(d))Ξt(θ)](i)πi−j(d)

=O
(

(1 + log j)2jmax(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)2imax(−d,−ζ)−1(1 + log(i− j))(i− j)−d−1
)

= O
(

(1 + log j)2jmax(−d,−ζ)−1
)
. (D.29)

Together, (D.27), (D.28), and (D.29) yield (D.19).

To prove (D.20), consider the partial derivatives ∂τj(θ, t)/∂ν, for which

∂τj(θ, t)

∂ν
= [(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S

′
d,t](j) (D.30)

− ν[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S
′
d,tSd,tΞt(θ)S

′
d,t](j). (D.31)

By (D.13) the first term (D.30) is O
(
(1 + log j)jmax(−d,−ζ)−1

)
, while by (D.4) and (D.12), it holds

for the second term (D.31) that

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S
′
d,tSd,t](j) = O

(
(1 + log j)jmax(−d,−ζ)−1

)
+O

( j−1∑
i=1

(1 + log i)imax(−d,−ζ)−1(j − i)−d−1
)

+O
( t∑
i=j+1

(1 + log i)imax(−d,−ζ)−1(i− j)−d−1
)
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=O
(

(1 + log j)2jmax(−d,−ζ)−1
)
, (D.32)

and the proof is analogous to (D.25) besides one log-factor. Furthermore, by (D.6) and (D.32)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S
′
d,tSd,tΞt(θ)](j) = O

(
(1 + log j)2jmax(−d,−ζ)−1

)
+O

( j−1∑
i=1

(1 + log i)2imax(−d,−ζ)−1(j − i)max(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)2imax(−d,−ζ)−1(i− j)max(−d,−ζ)−1
)

=O
(

(1 + log j)3jmax(−d,−ζ)−1
)
, (D.33)

where again the proof is analogous to (D.26) besides one log-factor. From (D.1) and (D.33) it then

follows for (D.31) that

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S
′
d,tSd,tΞt(θ)S

′
d,t](j)

= O
(

(1 + log j)3jmax(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)3imax(−d,−ζ)−1(i− j)−d−1
)

= O
(

(1 + log j)3jmax(−d,−ζ)−1
)
, (D.34)

and the proof can be carried out the same way as (D.27). Thus, (D.20) holds.

Turning to (D.21), consider the partial derivatives ∂τj(θ, t)/∂ϕ(l), where

∂τj(θ, t)

∂ϕ(l)
= ν[(ḃ1(ϕ(l)) · · · ḃt(ϕ(l)))Ξt(θ)S

′
d,t](j) (D.35)

− ν[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ḃ
′
ϕ(l),t

Bϕ,t +B′ϕ,tḂϕ(l),t)Ξt(θ)S
′
d,t](j). (D.36)

By assumption 3, the partial derivatives are of order ḃj(ϕ(l)) = ∂bj(ϕ)/∂ϕ(l) = O(j−ζ−1), so that

for the first term (D.35), analogously to (D.12)

[(ḃ1(ϕ(l)) · · · ḃt(ϕ(l)))Ξt(θ)](j) = O
(

(1 + log j)jmax(−d,−ζ)−1
)
,

and, analogously to (D.13)

[(ḃ1(ϕ(l)) · · · ḃt(ϕ(l)))Ξt(θ)Sd,t](j) = O
(

(1 + log j)jmax(−d,−ζ)−1
)
, (D.37)

so that (D.37) determines the rate of (D.35). Next, consider (D.36), for which one has by (D.12)

and (D.23)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ḃ
′
ϕ(l),t

Bϕ,t +B′ϕ,tḂϕ(l),t)](j)

=O
(

(1 + log j)jmax(−d,−ζ)−1
)

+O
( j−1∑
i=1

(1 + log i)imax(−d,−ζ)−1(j − i)−ζ−1
)
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+O
( t∑
i=j+1

(1 + log i)imax(−d,−ζ)−1(i− j)−ζ−1
)

= O
(

(1 + log j)2jmax(−d,−ζ)−1
)
, (D.38)

where the proof is identical to (D.25). By the same proof as for (D.26), by (D.6) and (D.38)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ḃ
′
ϕ(l),t

Bϕ,t +B′ϕ,tḂϕ(l),t)Ξt(θ)](j)

=O
(

(1 + log j)2jmax(−d,−ζ)−1
)

+O
( j−1∑
i=1

(1 + log i)2imax(−d,−ζ)−1(j − i)max(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)2imax(−d,−ζ)−1(i− j)max(−d,−ζ)−1
)

= O
(

(1 + log j)3jmax(−d,−ζ)−1
)
. (D.39)

Finally, again by using the same proof as for (D.27), by (D.1) and (D.38)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ḃ
′
ϕ(l),t

Bϕ,t +B′ϕ,tḂϕ(l),t)Ξt(θ)S
′
d,t](j)

= O
(

(1 + log j)3jmax(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)3imax(−d,−ζ)−1(i− j)−d−1
)

= O
(

(1 + log j)3jmax(−d,−ζ)−1
)
. (D.40)

Together, (D.37) and (D.40) yield (D.21).

Lemma D.5 (Convergence of the partial derivatives of τj(θ, t) to τj(θ)). For the partial derivatives

of τj(θ, t), it holds that

∂τj(θ, t)

∂θ

∣∣∣
θ=θ0
− ∂τj(θ)

∂θ

∣∣∣
θ=θ0

=
∞∑

k=t+1

∂rτ,j,k(θ)

∂θ

∣∣∣
θ=θ0

= O
(

(1 + log t)5tmax(−d0−ζ)−1
)
, (D.41)

with rτ,j,k(θ) as given in lemma D.3.

Proof of lemma D.5. From (D.18) and below rτ,j,t+1(θ) = −νR5(j) , where

R5(j) =[(bt+1(ϕ)− πt+1(d))
(
R′2S

′
d,t +R3s

′
t

)
](j)

+ [(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))
(
R2s

′
t +R1S

′
d,t

)
](j),

and with Bϕ,t and Sd,t as defined in (5), β′t = (bt(ϕ) · · · b1(ϕ)), s′t = (πt(d) · · ·π1(d)) as given in

lemma D.1, and R1, R2, R3 as stated below (D.16). The partial derivative of R5(j) w.r.t. the l-th

entry θ(l) is thus given by

∂R5(j)

∂θ(l)
=

[
∂(bt+1(ϕ)− πt+1(d))

∂θ(l)

(
R′2S

′
d,t +R3s

′
t

)]
(j)

(D.42)
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+

[(
∂(b1(ϕ)− π1(d))

∂θ(l)
· · · ∂(bt(ϕ)− πt(d))

∂θ(l)

)(
R2s

′
t +R1S

′
d,t

)]
(j)

(D.43)

+

[
(bt+1(ϕ)− πt+1(d))

(
R′2
∂S′d,t
∂θ(l)

+R3
∂s′t
∂θ(l)

)]
(j)

(D.44)

+

[
((b1(ϕ)− π1(d)) · · · (bt(ϕ)− πt(d)))

(
R2

∂s′t
∂θ(l)

+R1

∂S′d,t
∂θ(l)

)]
(j)

(D.45)

+

[
(bt+1(ϕ)− πt+1(d))

(
∂R′2
∂θ(l)

S′d,t +
∂R3

∂θ(l)
s′t

)]
(j)

(D.46)

+

[
((b1(ϕ)− π1(d)) · · · (bt(ϕ)− πt(d)))

(
∂R2

∂θ(l)
s′t +

∂R1

∂θ(l)
S′d,t

)]
(j)

. (D.47)

As noted in the proof of lemma D.4, the partial derivative of πj(d) only adds a log-factor to the

convergence rate of πj(d), i.e. ∂πj(d)/∂d = O((1 + log j)j−d−1), see Johansen and Nielsen (2010,

lemma B.3), while ∂bj(ϕ)/∂ϕ(l) = O(j−ζ−1) by assumption 3. Thus, the convergence rates of

(D.42) and (D.43) can be derived analogously to the proof of lemma D.3. This yields that (D.42)

is O((1 + log(t+ 1))(t+ 1)max(−d,−ζ)−1(1 + log(t+ 1− j))2(t+ 1− j)max(−d,−ζ)−1), while (D.43) is

O
(
(1 + log(t+ 1))3(t+ 1)max(−d,−ζ)−1(1 + log(t+ 1− j))2(t+ 1− j)max(−d,−ζ)−1

)
, and the additional

(1 + log(t+ 1)) term stems from ∂πj(d)/∂d. Analogously, the partial derivatives of st and Sd,t only

add a log-factor to the convergence rates as derived in the proof of lemma D.3. Thus, it holds

that (D.44) is O((t + 1)max(−d,−ζ)−1(1 + log(t + 1 − j))3(t + 1 − j)max(−d,−ζ)−1), while (D.45) is

O
(
(1 + log(t+ 1))2(t+ 1)max(−d,−ζ)−1(1 + log(t+ 1− j))3(t+ 1− j)max(−d,−ζ)−1

)
, and the additional

(1 + log(t + 1 − j)) term stems from ∂s′t/∂d and ∂S′d,t/∂d. For the last two terms (D.46) and

(D.47), note that R3 = O(1) as shown in (D.17) and below. Since β′t(∂βt/∂θ(l)), s
′
t(∂st/∂θ(l)),

s′tst, (β′tBϕ,t + νs′tSd,t)Ξt(θ)∂(β′tBϕ,t + νs′tSd,t)
′/∂θ(l), and (β′tBϕ,t + νs′tSd,t)(∂Ξt(θ)/∂θ(l))(β

′
tBϕ,t +

νs′tSd,t)
′ are O(1), it follows that

∂R3

∂θ(l)
= −(R3)2 ∂

∂θ(l)

[
(1 + β′tβt + ν + νs′tst)− (β′tBϕ,t + νs′tSd,t)Ξt(θ)(B

′
ϕ,tβt + νS′d,tst)

]
= O(1).

For the partial derivatives of R2(j) , consider

∂R2(j)

∂θ(l)
=− ∂R3

∂θ(l)

[
(β′tBϕ,t + νs′tSd,t)Ξt(θ)

]
(j)
−R3

[
(β′tBϕ,t + νs′tSd,t)

∂Ξt(θ)

∂θ(l)

]
(j)

(D.48)

−R3

[(
β′t
∂Bϕ,t
∂θ(l)

+
∂β′t
∂θ(l)

Bϕ,t +
∂ν

∂θ(l)
s′tSd,t + ν

∂s′t
∂θ(l)

Sd,t + νs′t
∂Sd,t
∂θ(l)

)
Ξt(θ)

]
(j)
, (D.49)

where the first term in (D.48) is O
(
(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1

)
by (D.17) and by

∂R3/∂θ(l) = O(1). For the second term in (D.48), one has [(β′tBϕ,t+νs
′
tSd,t)Ξt(θ)](j) = O((1+log(t+

1−j))(t+1−j)max(−d,−ζ)−1) from (D.17). Together with ∂Ξt(θ)/∂θ(l) = −Ξt(θ)[(∂/∂θ(l))(B
′
ϕ,tBϕ,t+

νS′d,tSd,t)]Ξt(θ), (D.22) and (D.23), it follows that

{
(β′tBϕ,t + νs′tSd,t)Ξt(θ)

[
∂

∂θ(l)

(
B′ϕ,tBϕ,t + νS′d,tSd,t

)]}
(j)
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=O
(

(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1
)

+O
( j−1∑
k=1

(1 + log(t+ 1− k))(t+ 1− k)max(−d,−ζ)−1 × (1 + log(j − k))(j − k)max(−d,−ζ)−1
)

+O
( t−j∑
k=1

(1 + log(t+ 1− j − k))(t+ 1− j − k)max(−d,−ζ)−1 × (1 + log k)kmax(−d,−ζ)−1
)

=O
(

(1 + log(t+ 1− j))3(t+ 1− j)max(−d,−ζ)−1
)
.

Finally, using (D.6), one obtains{
(β′tBϕ,t + νs′tSd,t)Ξt(θ)

[
∂

∂θ(l)

(
B′ϕ,tBϕ,t + νS′d,tSd,t

)]
Ξt(θ)

}
(j)

= O
(

(1 + log(t+ 1− j))4(t+ 1− j)max(−d,−ζ)−1
)
,

(D.50)

which yields the binding rate of convergence for the second term in (D.48). For (D.49)(
β′t
∂Bϕ,t
∂θ(l)

+
∂β′t
∂θ(l)

Bϕ,t +
∂ν

∂θ(l)
s′tSd,t + ν

∂s′t
∂θ(l)

Sd,t + νs′t
∂Sd,t
∂θ(l)

)
(j)

= O
(

(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1
)
,

by lemma D.1. Hence, using (D.6) yields an upper bound for (D.49)[(
β′t
∂Bϕ,t
∂θ(l)

+
∂β′t
∂θ(l)

Bϕ,t +
∂ν

∂θ(l)
s′tSd,t + ν

∂s′t
∂θ(l)

Sd,t + νs′t
∂Sd,t
∂θ(l)

)
Ξt(θ)

]
(j)

= O
(

(1 + log(t+ 1− j))2(t+ 1− j)max(−d,−ζ)−1
)
.

(D.51)

Together, the rates of convergence of (D.48) and (D.49) yield

∂R2(j)

∂θ(l)
= O

(
(1 + log(t+ 1− j))3(t+ 1− j)max(−d,−ζ)−1

)
. (D.52)

For the partial derivatives of R1, note that

∂R1(i,j)

∂θ(l)
= −

∂R2(i)

∂θ(l)

[
(β′tBϕ,t + νs′tSd,t)Ξt(θ)

]
(j)
−R2(i)

[
(β′tBϕ,t + νs′tSd,t)

∂Ξt(θ)

∂θ(l)

]
(j)

(D.53)

−R2(i)

[(
β′t
∂Bϕ,t
∂θ(l)

+
∂β′t
∂θ(l)

Bϕ,t +
∂ν

∂θ(l)
s′tSd,t + ν

∂s′t
∂θ(l)

Sd,t + νs′t
∂Sd,t
∂θ(l)

)
Ξt(θ)

]
(j)
. (D.54)

From (D.17) and (D.52), the first term in (D.53) is O((1 + log(t+ 1− i))4(t+ 1− i)max(−d,−ζ)−1(1 +

log(t + 1 − j))(t + 1 − j)max(−d,−ζ)−1). Similarly, using (D.50) and the convergence rate of R2(i)

as derived in the proof of lemma D.3, the second term in (D.53) is O((1 + log(t + 1 − i))(t + 1 −
i)max(−d,−ζ)−1(1 + log(t + 1 − j))4(t + 1 − j)max(−d,−ζ)−1). By (D.51), it follows that (D.54) is
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O((1 + log(t+ 1− i))(t+ 1− i)max(−d,−ζ)−1(1 + log(t+ 1− j))2(t+ 1− j)max(−d,−ζ)−1). Thus

∂R1(i,j)

∂θ(l)
= O

(
(1 + log(t+ 1− i))4(t+ 1− i)max(−d,−ζ)−1

× (1 + log(t+ 1− j))4(t+ 1− j)max(−d,−ζ)−1
)
.

(D.55)

With (D.52) at hand, it follows directly for (D.46) that(
∂R′2
∂θ(l)

S′d,t +
∂R3

∂θ(l)
s′t

)
(j)

= O
(

(1 + log(t+ 1− j))5(t+ 1− j)max(−d,−ζ)−1
)
.

By (D.1) and (D.2), it follows that (D.46) is O
(
(t + 1)max(−d,−ζ)−1(1 + log(t + 1 − j))5(t + 1 −

j)max(−d,−ζ)−1
)
. For (D.47), it follows from (D.52) and (D.55) that

(
∂R2
∂θ(l)

s′t + ∂R1
∂θ(l)

S′d,t

)
(i,j)

=

O
(
(1+ log(t+1− i))4(t+1− i)max(−d,−ζ)−1(1+ log(t+1− j))5(t+1− j)max(−d,−ζ)−1

)
. Again using

(D.1) and (D.2), it thus follows that (D.47) is O
(
(1 + log(t+ 1))5(t+ 1)max(−d,−ζ)−1(1 + log(t+ 1−

j))5(t+ 1− j)max(−d,−ζ)−1
)
. Together, this implies for (D.41) that

∂rτ,j,t+1(θ)

∂θ(l)
= O

(
(1 + log(t+ 1))5(t+ 1)max(−d,−ζ)−1

× (1 + log(t+ 1− j))5(t+ 1− j)max(−d,−ζ)−1
)
,

and thus ∂
∂θ

∑∞
k=t+1 rτ,j,k(θ)

∣∣
θ=θ0

= O
(
(1 + log t)5tmax(−d0−ζ)−1

)
.

Lemma D.6. For the truncated score function as given in (C.2), and the untruncated score function

as given in (C.3), it holds for all θ ∈ Θ3(κ3) that

√
n

[
∂Q̃(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂Q(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

]
= op(1). (D.56)

Proof of lemma D.6. Define h1,t =
∑t−1

j=1
∂τj(θ,t)
∂θ

∣∣∣
θ=θ0

ξt−j(d0), h̃1,t =
∑∞

j=1
∂τj(θ)
∂θ

∣∣∣
θ=θ0

ξ̃t−j(d0), as

well as h2,t =
∑t−1

j=0 τj(θ0, t)
∂ξt−j(d)

∂θ

∣∣∣
θ=θ0

, and h̃2,t =
∑∞

j=0 τj(θ0)
∂ξ̃t−j(d)

∂θ

∣∣∣
θ=θ0

. Then plugging (C.2),

(C.3) into (D.56) and using (B.11) yields

√
n

[
∂Q̃(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂Q(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

]

=
2√
n

[
n∑
t=1

ṽt(θ0)(h̃1,t − h1,t) +

n∑
t=1

h1,t (ṽt(θ0)− vt(θ0))

]

+
2√
n

[
n∑
t=1

ṽt(θ0)(h̃2,t − h2,t) +

n∑
t=1

h2,t (ṽt(θ0)− vt(θ0))

]
,

(D.57)

so that it remains to be shown that all four terms in (D.57) are op(1).

For the proofs it will be very useful to note that ṽt(θ0) adapted to the filtration F ξ̃t = σ(ξ̃s, s ≤ t)
is a stationary martingale difference sequence (MDS), as explained in the proof of theorem 4.2. Note
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in addition that all h̃1,t, h̃2,t are F ξ̃t−1-measurable, as τ0 = π0 = 1 are invariant w.r.t. θ.

Starting with the first term of (D.57), by plugging in h1,t and h̃1,t

2√
n

n∑
t=1

ṽt(θ0)(h̃1,t − h1,t)

=
2√
n

n∑
t=1

ṽt(θ0)
t−1∑
j=1

∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

(
ξ̃t−j(d0)− ξt−j(d0)

)
(D.58)

+
2√
n

n∑
t=1

ṽt(θ0)

t−1∑
j=1

(
∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

)
ξ̃t−j(d0) (D.59)

+
2√
n

n∑
t=1

ṽt(θ0)

∞∑
j=t

∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

ξ̃t−j(d0). (D.60)

As
∑∞

j=t
∂τj(θ)
∂θ

∣∣
θ=θ0

ξ̃t−j(d0) is F ξ̃t−1-measurable, ṽt(θ0)
∑∞

j=t
∂τj(θ)
∂θ

∣∣
θ=θ0

ξ̃t−j(d0) is also a MDS. Since
∂τj(θ)
∂θ

∣∣
θ=θ0

= O((1 + log j)4jmax(−d0,−ζ)−1), see lemma D.4, it follows that (D.60) is op(1). In

(D.59), ṽt(θ0)
∑t−1

j=1

(
∂τj(θ)
∂θ

∣∣
θ=θ0
− ∂τj(θ,t)

∂θ

∣∣
θ=θ0

)
ξ̃t−j(d0) adapted to F ξ̃t is a MDS, while the sum∑t−1

j=1

(
∂τj(θ)
∂θ

∣∣∣
θ=θ0
− ∂τj(θ,t)

∂θ

∣∣∣
θ=θ0

)
ξ̃t−j(d0) = Op((1 + log t)5tmax(−d0,−ζ)) by lemma D.5. Hence

(D.59) is op(1). For (D.58), note that by assumption 1

E

{[
n∑
t=1

ṽt(θ0)

t−1∑
j=1

∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

(
ξ̃t−j(d0)− ξt−j(d0)

)]2}

= E

[
n∑

s,t=1

( ∞∑
j=0

η2
min(s,t)−jτj(θ0)τj+|t−s|(θ0)

)

×
∞∑
j=0

ε2−j

( t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+t−k−l(d0)
)

×

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(D.61)

+
n∑

s,t=1

E

[(
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

j+|t−s|∑
k=0

τk(θ0)

j+|t−s|−k∑
l=0

al(ϕ0)πj+|t−s|−k−l(d0)

)

×
∞∑
j=0

ε2−j

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(D.62)
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+
n∑

s,t=1

E

[( ∞∑
j=t

ε2t−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

j−t∑
l=0

al(ϕ0)πj−k−l(d0)

))

×

( ∞∑
j=s

ε2s−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

j−s∑
l=0

al(ϕ0)πj−k−l(d0)

))]
.

(D.63)

For (D.61), I use
∑∞

j=0 η
2
min(s,t)−jτj(θ0)τj+|t−s|(θ0) = Op(|t − s|max(−d0,−ζ)−1) for t 6= s, else

Op(1), see lemma D.2, and
∑t−1

k=0
∂τk(θ,t)
∂θ

∣∣
θ=θ0

∑j
l=0 al(ϕ0)πj+t−k−l(d0) = O

(
(1 + log(t + j))6(t +

j)max(−d0,−ζ)−1
)
, see (D.1) together with lemma D.4. This yields the upper bound for (D.61)

K
n∑
t=1

( ∑
s=1, s<t

(t− s)max(−d0,−ζ)−1(1 + log t)6tmax(−d0,−ζ)−1 + (1 + log t)12t2 max(−d0,−ζ)−1

+
n∑

s=t+1

(s− t)max(−d0,−ζ)−1(1 + log t)6tmax(−d0,−ζ)−1
)

≤K
n∑
t=1

(1 + log t)6tmax(−d0,−ζ)−1 = O(1).

Similarly, for the second term (D.62), by (D.1) and lemma D.2 it holds that

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

j+|t−s|∑
k=0

τk(θ0)

j+|t−s|−k∑
l=0

al(ϕ0)πj+|t−s|−k−l(d0)

]

≤ K
min(s,t)−1∑

j=1

(1 + log j)3j−min(d0,ζ)−1(1 + log(j + |t− s|))3(j + |t− s|)−min(d0,ζ)−1.

Furthermore, by lemma D.4

E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]

≤ K
∞∑
j=1

(1 + log(t+ j))6(t+ j)max(−d0,−ζ)−1(1 + log(s+ j))6(s+ j)max(−d0,−ζ)−1,

61



so that by the same proof as for (D.61), it holds that (D.62) is also O(1).

By (D.1) and lemmas D.2 and D.4, the third term (D.63) is bounded from above by

n∑
s,t=1

E

[( ∞∑
j=t

ε2t−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

j−t∑
l=0

al(ϕ0)πj−k−l(d0)

))

×

( ∞∑
j=s

ε2s−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

j−s∑
l=0

al(ϕ0)πj−k−l(d0)

))]

≤ K
n∑

s,t=1

(1 + log t)9t2 max(−d0,−ζ)−1(1 + log s)9s2 max(−d0,−ζ)−1 = O(1).

As all three terms (D.61) to (D.63) are O(1), it follows directly by the scaling that (D.58) is op(1).

Now, since (D.58) to (D.60) are op(1), the first term in (D.57) is also op(1).

Next, consider the third term in (D.57). I plug in h2,t and h̃2,t which gives

2√
n

n∑
t=1

ṽt(θ0)(h̃2,t − h2,t)

=
2√
n

n∑
t=1

ṽt(θ0)
t−1∑
j=0

τj(θ0, t)

(
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

− ∂ξt−j(d)

∂θ

∣∣∣∣∣
θ=θ0

)
(D.64)

+
2√
n

n∑
t=1

ṽt(θ0)
t−1∑
j=0

(τj(θ0)− τj(θ0, t))
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

(D.65)

+
2√
n

n∑
t=1

ṽt(θ0)
∞∑
j=t

τj(θ0)
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

. (D.66)

For (D.66), note that (ṽt(θ0),F ξ̃t ) is a stationary MDS, and the sum
∑∞

j=t τj(θ0)
∂ξ̃t−j(d)

∂θ

∣∣
θ=θ0

is

F ξ̃t−1-measurable. Since ∂ξ̃t−i(d)/∂θ is Op(1) for all d > d0 − 1/2, it follows by lemma D.2 that∑∞
j=t τj(θ0)

∂ξ̃t−j(d)
∂θ

∣∣
θ=θ0

= Op((1 + log t)tmax(−d0,−ζ)), and thus (D.66) is op(1).

For (D.65), note that ṽt(θ0)
∑t−1

j=0 (τj(θ0)− τj(θ0, t))
∂ξ̃t−j(d)

∂θ

∣∣
θ=θ0

together with F ξ̃t is a MDS.

Furthermore, by lemma D.3, it holds that τj(θ0) − τj(θ0, t) = O((1 + log t)2tmax(−d0,−ζ)−1). Since

the partial derivatives of ξ̃t(d) are bounded in probability,
∑t−1

j=0 (τj(θ0)− τj(θ0, t))
∂ξ̃t−j(d)

∂θ

∣∣
θ=θ0

=

Op((1 + log t)2tmax(−d0,−ζ)). Therefore, (D.65) is op(1).

For (D.64), I use
∂πj(d−d0)

∂d

∣∣
d=d0

= −j−1 as shown by Robinson (2006, pp. 135-136) and Hualde
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and Robinson (2011, p. 3170). Thus, the partial derivative in (D.64) w.r.t. d is

∂ξ̃t(θ)

∂d

∣∣∣∣∣
θ=θ0

− ∂ξt(θ)

∂d

∣∣∣∣∣
θ=θ0

= −
∞∑
j=t

j−1ηt−j +
∞∑
j=0

ε−j

j∑
k=0

∂πt+j−k(d)

∂d

∣∣∣∣∣
θ=θ0

ak(ϕ0). (D.67)

As the partial derivatives w.r.t. all other entries in θ are zero, by assumption 1 it is sufficient to

consider

E

{[
n∑
t=1

ṽt(θ0)
t−1∑
j=0

τj(θ0, t)

(
∂ξ̃t−j(d)

∂d

∣∣∣∣∣
θ=θ0

− ∂ξt−j(d)

∂d

∣∣∣∣∣
θ=θ0

)]2}

=

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

η2
min(s,t)−jτj(θ0)τj+|t−s|(θ0)

]

×E

[ ∞∑
j=0

η2
−j

(
t−1∑
k=0

τk(θ0, t)

t+ j − k

)(
s−1∑
k=0

τk(θ0, s)

s+ j − k

)

+
∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)
∂πj+t−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)
∂πj+s−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)]
(D.68)

+
n∑

s,t=1

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

j+|t−s|∑
k=0

τk(θ0)

j+|t−s|−k∑
l=0

al(ϕ0)πj+|t−s|−k−l(d0)

]

×E

[ ∞∑
j=0

η2
−j

(
t−1∑
k=0

τk(θ0, t)

t+ j − k

)(
s−1∑
k=0

τk(θ0, s)

s+ j − k

)

+

∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)
∂πj+t−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)
∂πj+s−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)]

(D.69)

+

n∑
s,t=1

E

{[ ∞∑
j=t

η2
t−jτj(θ0)

t−1∑
k=0

−τk(θ0, t)

j − k
+

∞∑
j=t

ε2t−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
t−1∑
k=0

τk(θ0, t)

j−t∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)]
[ ∞∑
j=s

η2
s−jτj(θ0)

s−1∑
k=0

−τk(θ0, s)

j − k
+

∞∑
j=s

ε2s−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j−s∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)]}
.

(D.70)
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For (D.68), note the first expectation is σ2
η,0

∑min(s,t)−1
j=0 τj(θ0)τj+|t−s|(θ0) = O(|t− s|max(−d0,−ζ)−1)

for all t 6= s, and O(1) for t = s, see lemma D.2. For the other terms in (D.68), it holds that

E
[∑∞

j=0 η
2
−j

(∑t−1
k=0 τk(θ0, t)

1
t+j−k

)(∑s−1
k=0 τk(θ0, s)

1
s+j−k

) ]
≤ K

∑∞
j=0(1+log(t+j))2(t+j)−1(1+

log(s+ j))2(s+ j)−1, together with

E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)
∂πj+t−k−l(d)

∂d

∣∣
θ=θ0

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)
∂πj+s−k−l(d)

∂d

∣∣
θ=θ0

)]

≤ K
∞∑
j=0

(1 + log(t+ j))4(t+ j)max(−d0,−ζ)−1(1 + log(s+ j))4(s+ j)max(−d0,−ζ)−1,

by lemma D.2. It follows that (D.68) is bounded from above by

K
n∑
t=1

[ ∑
s=1, s<t

(t− s)max(−d0,−ζ)−1
∞∑
j=0

(1 + log(t+ j))2(t+ j)−1(1 + log(s+ j))2(s+ j)−1

+

∞∑
j=0

(1 + log(t+ j))4(t+ j)−2

+

n∑
s=t+1

(s− t)max(−d0,−ζ)−1
∞∑
j=0

(1 + log(t+ j))2(t+ j)−1(1 + log(s+ j))2(s+ j)−1

]

≤ K
n∑
t=1

[
(1 + log t)t−1+κ

]
≤ Knκ,

for 0 < κ < 1/2, since
∑∞

j=0(s + j)−2 = O(s−1), see Chan and Palma (1998, lemma 3.2), and,

as the logarithm is dominated by its powers,
∑∞

j=0(1 + log(s + j))2(s + j)−2 = O(s−1+κ) for all

0 < κ < 1/2. For (D.69), by lemmas D.1 and D.2, the first expectation is bounded by

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

j+|t−s|∑
k=0

τk(θ0)

j+|t−s|−k∑
l=0

al(ϕ0)πj+|t−s|−k−l(d0)

] = O(|t− s|max(−d0,−ζ)−1),

for all t 6= s, and is O(1) for t = s. Hence, by the same proof as for (D.68) the second term (D.69)

is also O(nκ), 0 < κ < 1/2. For the third term (D.70) one has by lemma D.2

n∑
s,t=1

E

{[ ∞∑
j=t

η2
t−jτj(θ0)

t−1∑
k=0

−τk(θ0, t)

j − k
+
∞∑
j=t

ε2t−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
t−1∑
k=0

τk(θ0, t)

j−t∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)][ ∞∑
j=s

η2
s−jτj(θ0)

s−1∑
k=0

−τk(θ0, s)

j − k
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+
∞∑
j=s

ε2s−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)(
s−1∑
k=0

τk(θ0, s)

j−s∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)]}

=
n∑

s,t=1

 ∞∑
j=t

O
(

(1 + log j)3jmax(−d0,−ζ)−2
) ∞∑

j=s

O
(

(1 + log j)3jmax(−d0,−ζ)−2
)

+
n∑

s,t=1

 ∞∑
j=t

O
(

(1 + log j)7j2 max(−d0,−ζ)−2
) ∞∑

j=s

O
(

(1 + log j)7j2 max(−d0,−ζ)−2
)

+
n∑

s,t=1

 ∞∑
j=t

O
(

(1 + log j)3jmax(−d0,−ζ)−2
) ∞∑

j=s

O
(

(1 + log j)7j2 max(−d0,−ζ)−2
)

+

n∑
s,t=1

 ∞∑
j=t

O
(

(1 + log j)7j2 max(−d0,−ζ)−2
) ∞∑

j=s

O
(

(1 + log j)3jmax(−d0,−ζ)−2
) ,

which is O(1), and thus all terms (D.68) to (D.70) are O(nκ). As (D.64) is appropriately scaled, it

follows that (D.64) is op(1) and thus the third term in (D.57) is op(1).

Next, consider the second term in (D.57) that can be decomposed into

2√
n

n∑
t=1

h1,t (ṽt(θ0)− vt(θ0)) =
2√
n

n∑
t=1

h1,t

t−1∑
j=0

(ξ̃t−j(d0)− ξt−j(d0))τj(θ0, t)

+
2√
n

n∑
t=0

h1,t

t−1∑
j=1

(τj(θ0)− τj(θ0, t))ξ̃t−j(d0) +
2√
n

n∑
t=1

h1,t

∞∑
j=t

τj(θ0)ξ̃t−j(d0).

(D.71)

For the first term in (D.71), note that by assumption 1

E

{[
n∑
t=1

h1,t

t−1∑
j=0

(ξ̃t−j(d0)− ξt−j(d0))τj(θ0, t)

]2}

=

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

∂τj(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

∂τj+|t−s|(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0

η2
min(s,t)−j

]

×E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(D.72)
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+

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

∂τk(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

j−k∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

(
j+|t−s|∑
k=0

∂τk(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0

j+|t−s|−k∑
l=0

πl(d0)aj+|t−s|−k−l(ϕ0)

)]

×E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(D.73)

+

n∑
s,t=1

E

[( ∞∑
j=t

ε2t−j

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

min(j−k,t−1)∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

(
t−1∑
k=0

τk(θ0, t)

j−t∑
l=0

al(ϕ0)πj−k−l(d0)

))

×
∞∑
j=s

ε2s−j

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

min(j−k,s−1)∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j−s∑
l=0

al(ϕ0)πj−k−l(d0)

))]
.

(D.74)

For (D.72), one has for all t 6= s

E

[
min(s,t)−1∑

j=1

∂τj(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

∂τj+|t−s|(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0

η2
min(s,t)−j

]
= O(|t− s|max(−d0,−ζ)−1),

by lemma D.4, and O(1) for t = s. Furthermore, for (D.73), the first term is bounded by

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

∂τk(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

j−k∑
l=0

πl(d0)aj−k−l(ϕ0)

)
(
j+|t−s|∑
k=0

∂τk(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0

j+|t−s|−k∑
l=0

πl(d0)aj+|t−s|−k−l(ϕ0)

)]
= O(|t− s|max(−d0,−ζ)−1),

by lemmas D.1 and D.4 for t 6= s, and O(1) otherwise. In addition, for both (D.72) and (D.73), by

lemmas D.1 and D.2 the other remaining term is bounded by

E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]

=O
(

(1 + log t)3tmax(−d0,−ζ)(1 + log s)3smax(−d0,−ζ)−1
)
.
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Consequently, (D.72) and (D.73) are
∑n

s,t=1O
(
(1 + log t)3tmax(−d0,−ζ)(1 + log s)3smax(−d0,−ζ)−1|t−

s|max(−d0,−ζ)−1
)

= O(1). Finally, by lemmas D.1, D.2, and D.4, (D.74) is

n∑
s,t=1

E

[ ∞∑
j=t

ε2t−jO
(

(1 + log j)9j2 max(−d0,−ζ)−2
) ∞∑

j=s

ε2s−jO
(

(1 + log j)9j2 max(−d0,−ζ)−2
)]

=

n∑
s,t=1

(1 + log t)9t2 max(−d0,−ζ)−1(1 + log s)9s2 max(−d0,−ζ)−1 = O(1).

Thus, the first term in (D.71) is op(1). For the second term in (D.71), note that by lemma

D.3,
∑t−1

j=1(τj(θ0) − τj(θ0, t)) ≤ K
∑t−1

j=1

∑∞
k=t+1(1 + log k)2(1 + log(k − j))2kmax(−d0,−ζ)−1(k −

j)max(−d0,−ζ)−1 ≤ K
∑t−1

j=1(1 + log t)2tmax(−d0,−ζ)−1(1 + log(t − j))2(t − j)max(−d0,−ζ) ≤ K(1 +

log t)2t−1
∑t−1

j=1 j
max(−d0,−ζ)(t − j)max(−d0,−ζ)(1 + log(t − j))2 ≤ K(1 + log t)5tmax(−d0,−ζ)−1, and

thus 2√
n

∑n
t=1 h1,t

∑t−1
j=1(τj(θ0)− τj(θ0, t))ξ̃t−j(d0) = op(1). For the third term in (D.71)

E


 n∑
t=1

h1,t

∞∑
j=t

τj(θ0)ξ̃t−j(d0)

2
=

n∑
s,t=1

E

min(s,t)−1∑
j=0

η2
min(s,t)−j

∂τj(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

∂τj+|t−s|(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0


× E

[ ∞∑
j=0

η2
−jτt+j(θ0)τs+j(θ0) +

∞∑
j=0

ε2−j

(
j∑

k=0

τt+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
j∑

k=0

τs+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)]
(D.75)

+

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

∂τk(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

j−k∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

j+|t−s|∑
k=0

∂τk(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0

j+|t−s|−k∑
l=0

πl(d0)aj+|t−s|−k−l(ϕ0)

]

× E

[ ∞∑
j=0

η2
−jτt+j(θ0)τs+j(θ0) +

∞∑
j=0

ε2−j

(
j∑

k=0

τt+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
j∑

k=0

τs+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)]
(D.76)
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+

n∑
s,t=1

E

[( ∞∑
j=t

ε2t−j

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

min(j−k,t−1)∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

(
j−t∑
k=0

τj+k(θ0)

j−t−k∑
l=0

al(ϕ0)πj−t−k−l(d0)

))

×

( ∞∑
j=s

ε2s−j

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

min(j−k,s−1)∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

(
j−s∑
k=0

τj+k(θ0)

j−s−k∑
l=0

al(ϕ0)πj−s−k−l(d0)

))]
.

(D.77)

For (D.75) and (D.76), it holds that

E

[ ∞∑
j=0

ε2−j

(
j∑

k=0

τt+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)(
j∑

k=0

τs+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)]
=O((1 + log t)3tmax(−d0,−ζ)(1 + log s)3smax(−d0,−ζ)−1),

and E
[∑∞

j=0 η
2
−jτt+j(θ0)τs+j(θ0)

]
= O((1 + log t)t−min(d0,ζ)(1 + log s)s−min(d0,ζ)−1). Thus, analo-

gously to (D.72) and (D.73), expressions (D.75) and (D.76) are O(1). Also analogously to (D.74),

by lemmas D.1, D.2, and D.4, (D.77) is bounded from above by

n∑
s,t=1

E

[ ∞∑
j=t

ε2t−jO
(

(1 + log j)6jmax(−d0,−ζ)−1(1 + log(j − t))3(j − t)max(−d0,−ζ)−1
)

 ∞∑
j=s

ε2s−jO
(

(1 + log j)6jmax(−d0,−ζ)−1(1 + log(j − s))3(j − s)max(−d0,−ζ)−1
)] = O(1).

Therefore, also the third term in (D.71) is op(1). It follows that the second term in (D.57) is op(1).

Finally, consider the last term in (D.57)

2√
n

n∑
t=1

h2,t (ṽt(θ0)− vt(θ0)) =
2√
n

n∑
t=1

h2,t

t−1∑
j=0

(ξ̃t−j(d0)− ξt−j(d0))τj(θ0, t)

+
2√
n

n∑
t=1

h2,t

t−1∑
j=1

(τj(θ0)− τj(θ0, t))ξ̃t−j(d0) +
2√
n

n∑
t=1

h2,t

∞∑
j=t

τj(θ0)ξ̃t−j(d0).

(D.78)

For the first term in (D.78), by assumption 1 it holds that

E

{[
n∑
t=1

(
t−1∑
j=0

τj(θ0, t)
∂ξt−j(d)

∂d

∣∣∣∣∣
θ=θ0

)
t−1∑
j=0

(ξ̃t−j(d0)− ξt−j(d0))τj(θ0, t)

]2}
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=

n∑
s,t=1

E

[
min(s,t)−1∑

j=1

η2
min(s,t)−j

(
j∑

k=1

1

k
τj−k(θ0,min(s, t))

)

×

j+|t−s|∑
k=1

1

k
τj+|t−s|−k(θ0,max(s, t))

]

×E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(D.79)

+
n∑

s,t=1

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0,min(s, t))

j−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
j+|t−s|∑
k=0

τk(θ0,max(s, t))

j+|t−s|−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj+|t−s|−k−l(ϕ0)

)]

×E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(D.80)

+
n∑

s,t=1

E

[( ∞∑
j=t

ε2t−j

(
t−1∑
k=0

τk(θ0, t)
t−1−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
t−1∑
k=0

τk(θ0, t)

j−t∑
l=0

al(ϕ0)πj−k−l(d0)

))

×

( ∞∑
j=s

ε2s−j

(
s−1∑
k=0

τk(θ0, s)
s−1−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j−s∑
l=0

al(ϕ0)πj−k−l(d0)

))]
,

(D.81)

while all other partial derivatives of ξt−j(d) (i.e. those w.r.t. all other entries except d) are zero.

By lemma D.2, the first term in (D.79) is

E

[
min(s,t)−1∑

j=1

η2
min(s,t)−j

(
j∑

k=1

1

k
τj−k(θ0,min(s, t))

)
j+|t−s|∑
k=1

1

k
τj+|t−s|−k(θ0,max(s, t))

]
= O(|t− s|−1),

for t 6= s, and O(1) otherwise. In addition, by lemmas D.1 and D.2 it holds that the first term of

(D.80) is

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0,min(s, t))

j−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)
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×

j+|t−s|∑
k=0

τk(θ0,max(s, t))

j+|t−s|−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj+|t−s|−k−l(ϕ0)

]

= O(|t− s|max(−d0,−ζ)−1), (D.82)

for t 6= s, and O(1) otherwise. The second term in (D.79) and (D.80) is

E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
=O((1 + log t)3tmax(−d0,−ζ)(1 + log s)3smax(−d0,−ζ)−1)

Thus, analogously to (D.72), (D.73), (D.75) and (D.76), it holds that (D.79) and (D.80) are O(1).

Finally, (D.81) is bounded from above by

n∑
s,t=1

E

[ ∞∑
j=t

ε2t−jO
(

(1 + log j)4jmax(−d0,−ζ)−1
)
O
(

(1 + log j)3jmax(−d0,−ζ)−1
)

×

 ∞∑
j=s

ε2s−jO
(

(1 + log j)4jmax(−d0,−ζ)−1
)
O
(

(1 + log j)3jmax(−d0,−ζ)−1
)]

=

n∑
s,t=1

O((1 + log t)7t2 max(−d0,−ζ)−1(1 + log s)7smax(−d0,−ζ)−1) = O(1).

Hence, the first term in (D.78) is op(1). For the second term in (D.78), by lemma D.3,
∑t−1

j=1(τj(θ0)−
τj(θ0, t)) = O((1 + log t)5tmax(−d0,−ζ)−1) as already noted for the second term in (D.71), and thus

2√
n

∑n
t=1 h2,t

∑t−1
j=1(τj(θ0)− τj(θ0, t))ξ̃t−j(d0) = op(1). For the third term in (D.71)

E

{[
n∑
t=1

h2,t

∞∑
j=t

τj(θ0)ξ̃t−j(d0)

]2}

=
n∑

s,t=1

E

[
min(s,t)−1∑

j=1

η2
min(s,t)−j

(
j∑

k=1

1

k
τj−k(θ0,min(s, t))

)

×

j+|t−s|∑
k=1

1

k
τj+|t−s|−k(θ0,max(s, t))

]

×E

[ ∞∑
j=0

η2
−jτt+j(θ0)τs+j(θ0)

+

∞∑
j=0

ε2−j

(
j∑

k=0

τt+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
j∑

k=0

τs+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)]

(D.83)
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+

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0,min(s, t))

j−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
j+|t−s|∑
k=0

τk(θ0,max(s, t))

j+|t−s|−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj+|t−s|−k−l(ϕ0)

)

×E

[ ∞∑
j=0

η2
−jτt+j(θ0)τs+j(θ0) +

∞∑
j=0

ε2−j

(
j∑

k=0

τt+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
j∑

k=0

τs+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)]
(D.84)

+
n∑

s,t=1

E

[( ∞∑
j=t

ε2t−j

(
t−1∑
k=0

τk(θ0, t)
t−k−1∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
j−t∑
k=0

τt+k(θ0)

j−t−k∑
l=0

al(ϕ0)πj−t−k−l(d0)

))

×

( ∞∑
j=s

ε2s−j

(
s−1∑
k=0

τk(θ0, s)

s−k−1∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
j−s∑
k=0

τs+k(θ0)

j−s−k∑
l=0

al(ϕ0)πj−s−k−l(d0)

))]
.

(D.85)

As noted above, the first expected value in (D.83) is O(|t − s|−1) for s 6= t, else O(1). For the

second term (D.84), note that the first expectation is O(|t − s|max(−d0,−ζ)−1) for s 6= t, else O(1),

see (D.82). Furthermore, as shown below (D.77), the second expectation in (D.83) and (D.84) is

O((1 + log t)3tmax(−d0,−ζ)(1 + log s)3smax(−d0,−ζ)−1), and thus (D.83) and (D.84) are O(1). Finally,

the last term (D.85) is O(1), and the proof is identical to (D.81). Thus, also the third term in

(D.78) is op(1). This shows that (D.57) is op(1) and completes the proof.

Lemma D.7 (Boundedness of third partial derivatives of Q(y, θ)). For d ∈ D3 as defined in the

proof of theorem 4.1, ν ∈ Σν as defined in section 4, and ϕ ∈ Nδ(ϕ0) as defined in assumptions 2

and 4, the third partial derivatives of the objective function (16) are uniformly dominated by some

random variable Bn that is Op(1),

Bn = sup
d∈D3,ν∈Σν ,ϕ∈Nδ(ϕ0)

∣∣∣∣∂3Q(y, θ)

∂θ(3)

∣∣∣∣ = Op(1).

Proof of lemma D.7. The third partial derivatives are

∂3Q(y, θ)

∂θ(k)∂θ(l)∂θ(m)
=

2

n

n∑
t=1

∂2vt(θ)

∂θ(k)∂θ(l)

∂vt(θ)

∂θ(m)
+

2

n

n∑
t=1

∂vt(θ)

∂θ(k)

∂2vt(θ)

∂θ(l)∂θ(m)

+
2

n

n∑
t=1

∂2vt(θ)

∂θ(k)∂θ(m)

∂vt(θ)

∂θ(l)
+

2

n

n∑
t=1

vt(θ)
∂3vt(θ)

∂θ(k)∂θ(l)∂θ(m)
,
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for k, l,m = 1, ..., q + 2, with ∂vt(θ)/(∂θ(k)) in (B.11),

∂2vt(θ)

∂θ(k)∂θ(l)
=

t−1∑
j=0

[
∂2τj(θ, t)

∂θ(k)∂θ(l)
ξt−j(d) +

∂τj(θ, t)

∂θ(k)

∂ξt−j(d)

∂θ(l)

+
∂τj(θ, t)

∂θ(l)

∂ξt−j(d)

∂θ(k)
+ τj(θ, t)

∂2ξt−j(d)

∂θ(k)∂θ(l)

]
,

∂3vt(θ)

∂θ(k)∂θ(l)∂θ(m)
=

t−1∑
j=0

[
∂3τj(θ, t)

∂θ(k)∂θ(l)∂θ(m)
ξt−j(d) +

∂2τj(θ, t)

∂θ(k)∂θ(l)

∂ξt−j(d)

∂θ(m)

+
∂2τj(θ, t)

∂θ(k)∂θ(m)

∂ξt−j(d)

∂θ(l)
+
∂τj(θ, t)

∂θ(k)

∂2ξt−j(d)

∂θ(l)∂θ(m)

+
∂2τj(θ, t)

∂θ(l)∂θ(m)

∂ξt−j(d)

∂θ(k)
+
∂τj(θ, t)

∂θ(l)

∂2ξt−j(d)

∂θ(k)∂θ(m)

+
∂τj(θ, t)

∂θ(m)

∂2ξt−j(d)

∂θ(k)∂θ(l)
+ τj(θ, t)

∂3ξt−j(d)

∂θ(k)∂θ(l)∂θ(m)

]
.

Boundedness in probability of the third partial derivatives then follows from (B.12) upon verification

of the absolute summability condition of the partial derivatives of τj(θ, t), as the derivatives of

ξt−j(d) are zero for all entries of θ except for d, and as those derivatives w.r.t. d are contained in

(B.12). As can be seen from lemma D.4 and its proof, the second and third partial derivatives

of τj(θ, t) depend on the coefficients bj(ϕ) and πj(d), the matrices Ξt(θ), Sd,t, Bϕ,t, and their

partial derivatives. While the convergence rates of the former are given in lemma D.1, those for the

first partial derivatives are contained in the proof of lemma D.4. In addition, we require
∂2πj(d)
∂d2

=

π̈j(d) = O((1+log j)2j−d−1) and
∂3πj(d)
∂d3

=
...
π j(d) = O((1+log j)3j−d−1) (see Johansen and Nielsen;

2010, lemma B.3),
∂2bj(ϕ)

∂ϕ(k)∂ϕ(l)
= b̈j(ϕ(k,l)) = O(j−ζ−1) and

∂3bj(ϕ)
∂ϕ(k)∂ϕ(l)∂ϕ(m)

=
...
b j(ϕ(k,l,m)) = O(j−ζ−1)

for k, l,m = 1, ..., q by assumption 4. Based on them, the convergence rates of the following matrices

are obtained

(S̈d,t)(i,j) =

(
∂2Sd,t
∂d2

)
(i,j)

=

π̈j−i(d) = O((1 + log(j − i))2(j − i)−d−1) if i < j,

0 else,

(
...
S d,t)(i,j) =

(
∂3Sd,t
∂d3

)
(i,j)

=


...
π j−i(d) = O((1 + log(j − i))3(j − i)−d−1) if i < j,

0 else,

(S̈′d,tSd,t)(i,j) =


∑i−1
k=1 π̈k(d)πk+j−i(d) = O((1 + j − i)−d−1) if i ≤ j,∑j−1
k=0 πk(d)π̈k+i−j(d) = O((1 + log(i− j))2(i− j)−d−1) else,

(S̈′d,tṠd,t)(i,j) =


∑i−1
k=1 π̈k(d)π̇k+j−i(d) = O((1 + log(1 + j − i))(1 + j − i)−d−1) if i ≤ j,∑j−1
k=1 π̇k(d)π̈k+i−j(d) = O((1 + log(i− j))2(i− j)−d−1) else,

(
...
S
′
d,tSd,t)(i,j) =


∑i−1
k=1

...
π k(d)πk+j−i(d) = O((1 + j − i)−d−1) if i ≤ j,∑j−1

k=0 πk(d)
...
π k+i−j(d) = O((1 + log(i− j))3(i− j)−d−1) else,

(B̈ϕ(k,l),t)(i,j) =

(
∂2Bϕ,t

∂ϕ(k)∂ϕ(l)

)
(i,j)

=

b̈j−i(ϕ(k,l)) = O((j − i)−ζ−1) if i < j,

0 else,
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(
...
Bϕ(k,l,m),t)(i,j) =

(
∂3Bϕ,t

∂ϕ(k)∂ϕ(l)∂ϕ(m)

)
(i,j)

=


...
b j−i(ϕ(k,l,m)) = O((j − i)−ζ−1) if i < j,

0 else,

(B̈′ϕ(k,l),t
Bϕ,t)(i,j) =


∑i−1
m=1 b̈m(ϕ(k,l))bm+j−i(ϕ) = O((1 + j − i)−ζ−1) if i ≤ j,∑j−1
m=0 bm(ϕ)b̈m+i−j(ϕ(k,l)) = O((i− j)−ζ−1) else,

(B̈′ϕ(k,l),t
Ḃϕ(m),t)(i,j) =


∑i−1
h=1 b̈h(ϕ(k,l))ḃh+j−i(ϕ(m)) = O((1 + j − i)−ζ−1) if i ≤ j,∑j−1
h=1 ḃh(ϕ(m))b̈h+i−j(ϕ(k,l)) = O(((i− j)−ζ−1) else,

(
...
B
′
ϕ(k,l,m),t

Bϕ,t)(i,j) =


∑i−1
h=1

...
b h(ϕ(k,l,m))bh+j−i(ϕ) = O((1 + j − i)−ζ−1) if i ≤ j,∑j−1

h=0 bh(ϕ)
...
b h+i−j(ϕ(k,l,m)) = O((i− j)−ζ−1) else,

for k, l,m = 1, 2, ..., q + 2. As becomes apparent, the partial derivatives just add a log-term

to the convergence rates that is always dominated by its powers and thus does not affect the

convergence of the partial derivatives. It follows that the first, second and third partial derivatives

of τj(θ, t) are absolutely summable in j and thus satisfy the condition for (B.12). By (B.12),

Bn = supd∈D3,ν∈Σν ,ϕ∈Nδ(ϕ0)

∣∣∣∂3Q(y,θ)

∂θ(3)

∣∣∣ = Op(1).

Lemma D.8. For the partial derivatives of vt(θ), it holds that

∂ṽt(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂vt(θ)

∂θ

∣∣∣∣∣
θ=θ0

=
∞∑
j=1

[
φ̃η,jηt−j + φ̃ε,jεt−j

]

where φ̃η,j is O((1 + log j)2j−1), while φ̃ε,j is O((1 + log t)5tmax(−d0,−ζ)−1) for j < t and O((1 +

log j)7jmax(−d0,−ζ)−1) for j ≥ t.

Proof of lemma D.8. Consider

∂ṽt(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂vt(θ)

∂θ

∣∣∣∣∣
θ=θ0

=

t−1∑
j=1

∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

[
ξ̃t−j(d0)− ξt−j(d0)

]
(D.86)

+
t−1∑
j=1

[
∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

]
ξ̃t−j(d0) +

∞∑
j=t

∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

ξ̃t−j(d0) (D.87)

+

t−1∑
j=0

τj(θ0, t)

[
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

− ∂ξt−j(d)

∂θ

∣∣∣∣∣
θ=θ0

]
(D.88)

+
t−1∑
j=1

[τj(θ0)− τj(θ0, t)]
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

+

∞∑
j=t

τj(θ0)
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

. (D.89)

Since ξ̃t−j(d0)−ξt−j(d0) =
∑∞

k=t−j πk(d0)ct−j−k, by (D.1), lemma D.4, and assumption 2, the term

(D.86) is
∑∞

j=t εt−j
∑t−1

k=0
∂τk(θ,t)
∂θ

∣∣
θ=θ0

∑j−t
l=0 al(ϕ0)πj−k−l(d0) =

∑∞
j=tO((1+log j)6jmax(−d0,−ζ)−1)εt−j .

By lemma D.5, (D.1), and assumption 3, the first term in (D.87) is

t−1∑
j=1

[
∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

]
ξ̃t−j(d0) =

t−1∑
j=1

[
∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

]
ηt−j
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+

∞∑
j=1

εt−j

min(j,t−1)∑
k=1

[
∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

]
j−k∑
l=0

al(ϕ0)πj−k−l(d0)

=
t−1∑
j=1

O((1 + log t)5tmax(−d0,−ζ)−1)(ηt−j + εt−j) +
∞∑
j=t

O((1 + log j)7jmax(−d0,−ζ)−1)εt−j .

For the second term in (D.87), by lemma D.4, (D.1), and assumption 3

∞∑
j=t

∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

ξ̃t−j(d0) =
∞∑
j=t

∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

ηt−j +
∞∑
j=t

εt−j

j−t∑
k=0

∂τt+k(θ)

∂θ

∣∣∣∣∣
θ=θ0

j−t−k∑
l=0

al(ϕ0)πj−t−k−l(d0)

=
∞∑
j=t

O((1 + log j)4jmax(−d0,−ζ)−1)ηt−j +
∞∑
j=t

O((1 + log j)6jmax(−d0,−ζ)−1)εt−j .

Note that (D.88), (D.89) are non-zero only for the derivative w.r.t. d. For (D.88), it holds that
∂πj(d−d0)

∂d

∣∣
d=d0

= −j−1, see Robinson (2006, pp. 135-136). Thus

t−1∑
j=0

τj(θ0, t)

[
∂ξ̃t−j(d)

∂d

∣∣∣∣∣
θ=θ0

− ∂ξt−j(d)

∂d

∣∣∣∣∣
θ=θ0

]
= −

∞∑
j=t

ηt−j

t−1∑
k=0

τk(θ0, t)

j − k

+

∞∑
j=t

εt−j

t−1∑
k=0

τk(θ0, t)

j−t∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

=

∞∑
j=t

O((1 + log j)2j−1)ηt−j +

∞∑
j=t

O((1 + log j)4jmax(−d0,−ζ)−1)εt−j ,

by lemma D.2, Johansen and Nielsen (2010, lemma B.3), and assumption 3. For the first term in

(D.89), by lemmas D.2, D.3, Johansen and Nielsen (2010, lemma B.3), and assumption 3

t−1∑
j=1

[τj(θ0)− τj(θ0, t)]
∂ξ̃t−j(d)

∂d

∣∣∣∣∣
θ=θ0

= −
∞∑
j=1

ηt−j

min(j,t−1)∑
k=1

τk(θ0)− τk(θ0, t)

j + 1− k

+

∞∑
j=0

εt−j

min(j,t−1)∑
k=0

(τk(θ0)− τk(θ0, t))

j−k∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

=
∞∑
j=1

O((1 + log j)2j−1)ηt−j +
t−1∑
j=1

O((1 + log t)2tmax(−d0,−ζ)−1)εt−j

+
∞∑
j=t

O((1 + log j)5jmax(−d0,−ζ)−1)εt−j ,

while for the second term in (D.89), by lemma D.2, Johansen and Nielsen (2010, lemma B.3), and

assumption 3

∞∑
j=t

τj(θ0)
∂ξ̃t−j(d)

∂d

∣∣∣∣∣
θ=θ0

= −
∞∑
j=t

ηt−j

j∑
k=t

τk(θ0)

j + 1− k
+
∞∑
j=t

εt−j

j−t∑
k=0

τt+k(θ0)

j−t−k∑
l=0

al(ϕ0)
∂πj−t−k−l(d)

∂d

∣∣∣∣∣
θ=θ0
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=
∞∑
j=t

O((1 + log j)2j−1)ηt−j +
∞∑
j=t

O((1 + log j)4jmax(−d0,−ζ)−1)εt−j .

Together, the results above prove lemma D.8.

Lemma D.9. For vt(θ) as defined and (15) and ṽt(θ) as defined in (B.2), it holds that

1

n

n∑
t=1

ṽt(θ0)
∂2ṽt(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

− 1

n

n∑
t=1

vt(θ0)
∂2vt(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

= op(1),

for all i, j = 1, ..., q + 2.

Proof of lemma D.9. The proof is analogous to the proof of lemma D.6 and thus is only summarized

briefly. It will be helpful to note that there exists a constant 0 < K <∞ such that

∂2τk(θ, t)

∂θ(i)∂θ(j)
= O

(
(1 + log k)Kkmax(−d,−ζ)−1

)
, (D.90)

∂2τk(θ)

∂θ(i)∂θ(j)
− ∂2τk(θ, t)

∂θ(i)∂θ(j)
= O

(
(1 + log t)Ktmax(−d,−ζ)−1

)
. (D.91)

(D.90) can be seen directly from the proof of lemma D.4, as the second partial derivatives only

add a log-factor to the convergence rates in lemma D.4. (D.91) can be shown analogously to the

proof of lemma D.5, where again the second partial derivatives only add a log-factor to the conver-

gence rates in lemma D.5. To simplify the notation, define h3,t(i,j) =
∑t−1

k=1
∂2τk(θ,t)
∂θ(i)∂θ(j)

∣∣
θ=θ0

ξt−k(d0),

h4,t(i,j) =
∑t−1

k=1 τk(θ0, t)
∂2ξt−k(d)
∂θ(i)∂θ(j)

∣∣
θ=θ0

, h5,t(i,j) =
∑t−1

k=1
∂τk(θ,t)
∂θ(i)

∣∣
θ=θ0

∂ξt−k(d)
∂θ(j)

∣∣
θ=θ0

, as well as h̃3,t(i,j) =∑∞
k=1

∂2τk(θ)
∂θ(i)∂θ(j)

∣∣
θ=θ0

ξ̃t−k(d0), h̃4,t(i,j) =
∑∞

k=1 τk(θ0)
∂2ξ̃t−k(d)
∂θ(i)∂θ(j)

∣∣
θ=θ0

, h̃5,t(i,j) =
∑∞

k=1
∂τk(θ)
∂θ(i)

∣∣
θ=θ0

∂ξ̃t−k(d)
∂θ(j)

∣∣
θ=θ0

.

The term of interest then can be written as

1

n

n∑
t=1

ṽt(θ0)
∂2ṽt(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

− 1

n

n∑
t=1

vt(θ0)
∂2vt(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

=
1

n

n∑
t=1

ṽt(θ0)
(
h̃3,t(i,j) − h3,t(i,j)

)
+

1

n

n∑
t=1

h3,t(i,j) (ṽt(θ0)− vt(θ0))

+
1

n

n∑
t=1

ṽt(θ0)
(
h̃4,t(i,j) − h4,t(i,j)

)
+

1

n

n∑
t=1

h4,t(i,j) (ṽt(θ0)− vt(θ0))

+
1

n

n∑
t=1

ṽt(θ0)
(
h̃5,t(i,j) − h5,t(i,j)

)
+

1

n

n∑
t=1

h5,t(i,j) (ṽt(θ0)− vt(θ0))

+
1

n

n∑
t=1

ṽt(θ0)
(
h̃5,t(j,i) − h5,t(j,i)

)
+

1

n

n∑
t=1

h5,t(j,i) (ṽt(θ0)− vt(θ0)) ,

(D.92)

and thus the different terms in (D.92) can be considered separately and will be shown to be op(1).

Note that ṽt(θ0) adapted to the filtration F ξ̃t is a MDS as explained in the proof of theorem 4.2, while

h̃3,t(i,j) , h̃4,t(i,j) , h̃5,t(i,j) are F ξ̃t−1-measurable. Starting with the first term in (D.92), by plugging in
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h̃3,t(i,j) , h3,t(i,j)

1

n

n∑
t=1

ṽt(θ0)(h̃3,t(i,j) − h3,t(i,j)) =
1

n

n∑
t=1

ṽt(θ0)

t−1∑
k=1

∂2τk(θ, t)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

(
ξ̃t−k(d0)− ξt−k(d0)

)

+
1

n

n∑
t=1

ṽt(θ0)

t−1∑
k=1

(
∂2τk(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

− ∂2τk(θ, t)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

)
ξ̃t−k(d0)

+
1

n

n∑
t=1

ṽt(θ0)

∞∑
k=t

∂2τk(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

ξ̃t−k(d0).

(D.93)

The latter two terms in (D.93) are MDS when adapted to F ξ̃t , as (ṽt(θ0),F ξ̃t ) is a stationary MDS

and as the other terms are F ξ̃t−1-measurable. By (D.90) and (D.91),
∑∞

k=t
∂2τk(θ)
∂θ(i)∂θ(j)

∣∣
θ=θ0

ξ̃t−k(d0)

as well as
∑t−1

k=1

(
∂2τk(θ)
∂θ(i)∂θ(j)

∣∣
θ=θ0
− ∂2τk(θ,t)

∂θ(i)∂θ(j)

∣∣
θ=θ0

)
ξ̃t−k(d0) are op(1). Hence, the latter two terms in

(D.93) are also op(1). In contrast, the first term in (D.93) is not a MDS. However, by the same

proof as for (D.58) (replacing the first partial derivative of τk(θ, t) by the second partial derivative

and noting that this only adds a log-factor to the convergence rate) it can also be shown to be

op(1). Thus, (D.93) is op(1). For the third term in (D.92), by plugging in h̃4,t(i,j) , h4,t(i,j)

1

n

n∑
t=1

ṽt(θ0)(h̃4,t(i,j) − h4,t(i,j)) =
1

n

n∑
t=1

ṽt(θ0)
t−1∑
k=1

(τk(θ0)− τk(θ0, t))
∂2ξ̃t−k(d)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

+
1

n

n∑
t=1

ṽt(θ0)

t−1∑
k=1

τk(θ0, t)

(
∂2ξ̃t−k(d)

∂θ(i)∂θ(j)
− ∂2ξt−k(d)

∂θ(i)∂θ(j)

)∣∣∣∣∣
θ=θ0

+
1

n

n∑
t=1

ṽt(θ0)
∞∑
k=t

τk(θ0)
∂2ξ̃t−k(d)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

,

(D.94)

where the first and third term are MDS when adapted to F ξ̃t , as ṽt(θ0) is a MDS and the re-

maining term is F ξ̃t−1-measurable. The third term is op(1), because
∑∞

k=t τk(θ0)
∂2ξ̃t−k(d)
∂θ(i)∂θ(j)

∣∣
θ=θ0

is

op(1) by lemma D.2, and by Hualde and Robinson (2011, lemma 4). The first term is op(1) since

(τk(θ0)− τk(θ0, t))
∂2ξ̃t−k(d)
∂θ(i)∂θ(j)

∣∣
θ=θ0

is op(1) by lemma D.3. The second term can be shown to be op(1)

analogously to (D.64) by replacing the first partial derivatives of ξ̃t(d) with the second partial

derivatives, as this only adds a log-factor to the convergence rate, see Hualde and Robinson (2011,

lemma 4). For the fifth term in (D.92), similarly to (D.93) and (D.94)

1

n

n∑
t=1

ṽt(θ0)(h̃5,t(i,j) − h5,t(i,j)) =
1

n

n∑
t=1

ṽt(θ0)
∞∑
k=t

∂τk(θ0)

∂θ(i)

∣∣∣∣∣
θ=θ0

∂ξ̃t−k(d)

∂θ(j)

∣∣∣∣∣
θ=θ0

+
1

n

n∑
t=1

ṽt(θ0)
t−1∑
k=1

∂τk(θ, t)

∂θ(i)

∣∣∣∣∣
θ=θ0

(
∂ξ̃t−k(d)

∂θ(j)
− ∂ξt−k(d)

∂θ(j)

)∣∣∣∣∣
θ=θ0

+
1

n

n∑
t=1

ṽt(θ0)

t−1∑
k=1

(
∂τk(θ)

∂θ(i)
− ∂τk(θ, t)

∂θ(i)

) ∣∣∣∣∣
θ=θ0

∂ξ̃t−k(d)

∂θ(j)

∣∣∣∣∣
θ=θ0

,

(D.95)
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where the first and third term are MDS as before. The first term is op(1) by lemma D.4, while

the third term is op(1) by lemma D.5. The second term can be shown to be op(1) analogously to

(D.64) using (D.67), as the partial derivatives of τk(θ, t) only add a log-factor to the convergence

rates, see lemma D.4. Thus, (D.95) is also op(1). The second, fourth and sixth term in (D.92) can

be written as

1

n

n∑
t=1

hl,t(i,j) (ṽt(θ0)− vt(θ0)) =
1

n

n∑
t=1

hl,t(i,j)

t−1∑
k=0

(ξ̃t−k(d0)− ξt−k(d0))τk(θ0, t)

+
1

n

n∑
t=1

hl,t(i,j)

t−1∑
k=1

(τk(θ0)− τk(θ0, t))ξ̃t−k(d0) +
1

n

n∑
t=1

hl,t(i,j)

∞∑
k=t

τk(θ0)ξ̃t−k(d0),

(D.96)

with l = 3, 4, 5. For l = 3, (D.96) only differs from (D.71) as it contains the second partial

derivatives of τk(θ, t) in h3,t(i,j) . However, they only add a log-factor to the convergence rates of the

first partial derivatives, see (D.90). For l = 4, (D.96) is almost identical to (D.78), where the only

difference is that the former considers the second partial derivatives of ξt(d) via h4,t(i,j) . Again,

the second partial derivatives only add a log-factor to the convergence rates in (D.78) (Hualde and

Robinson; 2011, lemma 4). For l = 5, (D.96) is again almost identical to (D.78) but now includes

the first partial derivative of τk(θ, t) via h5,t(i,j) . As for the other terms, by lemma D.4 the derivative

again only adds a log-factor to the convergence rate of τk(θ, t). Thus, it follows directly from (D.71)

and (D.78), together with (D.90) and Hualde and Robinson (2011, lemma 4), that (D.96) is op(1).

The two remaining terms in (D.92) are op(1) by (D.95) and (D.96), as i, j can be interchanged.

This completes the proof.
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